You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 October 2014The effect of temperature in flux-assisted synthesis of SnNb2O6
A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of synthesis temperature was investigated in detail using different reaction temperatures (300, 500, 600, 800, 1000 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET). The synthesis with SnCl2 as a flux led to tin niobate particles in the platelet morphology with smooth surfaces. The synthesized crystal showed 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1:10 or higher) exhibited improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm).
The alert did not successfully save. Please try again later.
D. Noureldine, K. Takanabe, "The effect of temperature in flux-assisted synthesis of SnNb2O6," Proc. SPIE 9176, Solar Hydrogen and Nanotechnology IX, 91760E (3 October 2014); https://doi.org/10.1117/12.2060660