8 September 2014 Aligning and testing non-null optical system with deflectometry
Author Affiliations +
We present our analysis methodology for a 20.3 cm prototype optical tracker to determine why instabilities occur below 50 Hz and suggest improvements. The Navy Precision Optical Interferometer makes use of six small optical telescope stations spaced along a Y-array to synthesize an equivalent single larger telescope. Piezoelectric-driven optical trackers steer 12.5 cm output beams from each station to an optics laboratory up to 700 m distant. A percentage of this starlight is split off and used in a closed-loop feedback to update the pointing of the telescope and steering of the tracker. Steering stabilizes atmospheric induced beam trajectory deviations, required for fringe generation. Because of closedloop feedback, we require all fundamental frequencies to be at least 3 times the desired operational frequency, or 150 Hz. These trackers are modified commercial aluminum gimbal mounts with flex-pivot axles and very small damping ratio. Steering is tip/tilt mirror rotation by push-only actuators and a return spring. It is critical contact be maintained between actuator, mirror mount and return spring. From our dynamic analysis, the 122 N return spring is 2.9 times that required, and has a natural frequency equal to 238 Hz. The range of steering, 140 microradian, is double that required and the 0.077 microradian precision is 2.6 times that required. The natural frequency of the tracker is 66 Hz and the tuned closed-loop operational frequency is only 22 Hz. We conclude the low fundamental frequency of the mount limits its performance below 50 Hz and stiffening the structure is required.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Weirui Zhao, Weirui Zhao, Run Huang, Run Huang, Peng Su, Peng Su, James H. Burge, James H. Burge, "Aligning and testing non-null optical system with deflectometry", Proc. SPIE 9195, Optical System Alignment, Tolerancing, and Verification VIII, 91950F (8 September 2014); doi: 10.1117/12.2062510; https://doi.org/10.1117/12.2062510


Study of the impact of E ELT and MICADO distortion...
Proceedings of SPIE (August 03 2016)
Focus and alignment using out of focus stellar images at...
Proceedings of SPIE (September 16 2010)
SCOTS a reverse Hartmann test with high dynamic range...
Proceedings of SPIE (September 12 2012)
Active optics handling inside Galileo Telescope
Proceedings of SPIE (May 31 1994)
Astronomical imaging using ground-layer adaptive optics
Proceedings of SPIE (September 23 2007)

Back to Top