You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 September 2014Novel applications of the x-ray tracing software package McXtrace
We will present examples of applying the X-ray tracing software package McXtrace to different kinds of X-ray
scattering experiments. In particular we will be focusing on time-resolved type experiments. Simulations of full
scale experiments are particularly useful for this kind, especially when they are performed at an FEL-facility.
Beamtime here is extremely scarce and the delay between experiment and publication is notoriously long. A
major cause for the delay is the general complexity of the experiments performed. A complexity which arises
from the pulsed state of the source.
As an example, consider a pump-and-probe type experiment. In order to get the wanted signal from the
sample the X-ray pulse from the FEL source needs to overlap in space and time with the pumping pulse inside the
sample. This is made more difficult by several effects: The sample response may be dependent of the polarisation
of the pumping and/or probing pulse. There may be significant time-jitter in the pulse arrival times. The
composition of the sample may vary depending on local sample geometry and be modified by the probing pulse.
Many of the samples considered are in a liquid state and thus have a variable geometry. ...to name some of the
issues encountered. Generally more than one or all of these effects are present at once.
Simulations can in these cases be used to identify distinct footprints of such distortions and thus give the
experimenter a means of deconvoluting them from the signal.
We will present a study of this kind along with the newest developments of the McXtrace software package.
The alert did not successfully save. Please try again later.
Erik B. Knudsen, Martin M. Nielsen, Kristoffer Haldrup, Eric Topel, Søren Schmidt, "Novel applications of the x-ray tracing software package McXtrace," Proc. SPIE 9209, Advances in Computational Methods for X-Ray Optics III, 92090B (5 September 2014); https://doi.org/10.1117/12.2061411