Front Matter: Volume 9218
Contents

ix Authors
xi Conference Committee

SESSION 1 SOUMI NPP I

9218 02 Assessment of the Clouds and the Earth’s Radiant Energy System (CERES) Flight Model 5 (FM5) instrument performance and stability [9218-1]

9218 03 Determination of the SNPP VIIRS SDSM screen transmittance from both yaw maneuver and regular on-orbit data [9218-2]

9218 04 Suomi-NPP VIIRS lunar radiometric calibration observations [9218-3]

9218 06 Operational in-flight calibration of S-NPP VIIRS in the visible using Rayleigh scattering [9218-76]

SESSION 2 SOUMI NPP II

9218 08 An overview of NASA VCST SNPP VIIRS day-night band on-orbit calibration methodology [9218-6]

9218 09 VIIRS Day-Night Band (DNB) calibration methods for improved uniformity [9218-7]

9218 0A Assessment of on-orbit crosstalk impact for SNPP VIIRS VisNIR bands [9218-8]

9218 0C The ground track oblique Cassini projection used for producing VIIRS mapped imagery [9218-10]

SESSION 3 INSTRUMENT CROSS-COMPARISONS AND VICARIOUS CALIBRATION I

9218 0D Comparison of AIRS, IASI, and CrIS radiances and trends at Dome C [9218-11]

9218 0E AIRS Level-1C and applications to cross-calibration with MODIS and CrIS [9218-12]

9218 0F Evaluation of the AIRS and CrIS relative radiometric calibration under cloudy conditions [9218-13]

9218 0G Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands [9218-14]

9218 0H Calibrating historical IR sensors using GEO and AVHRR infrared tropical mean calibration models [9218-15]
<table>
<thead>
<tr>
<th>SESSION 4</th>
<th>INSTRUMENT CROSS-COMPARISONS AND VICARIOUS CALIBRATION II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 0I</td>
<td>Assessment of VIIRS radiometric performance using vicarious calibration sites [9218-17]</td>
</tr>
<tr>
<td>9218 0K</td>
<td>Cross-calibration of Landsat 5 TM and Landsat 8 OLI with Aqua MODIS using PICS [9218-19]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 5</th>
<th>EOS TERRA I</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 0M</td>
<td>Terra mission operations: launch to the present (and beyond) [9218-21]</td>
</tr>
<tr>
<td>9218 0N</td>
<td>Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit [9218-22]</td>
</tr>
<tr>
<td>9218 0O</td>
<td>Status of Terra MODIS operation, calibration, and performance [9218-23]</td>
</tr>
<tr>
<td>9218 0P</td>
<td>Retrieval algorithm development and product validation for TERRA/MOPITT [9218-24]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>EOS TERRA II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 0Q</td>
<td>On-orbit stability and performance of the Clouds and Earth’s Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft [9218-25]</td>
</tr>
<tr>
<td>9218 0R</td>
<td>Vicarious calibration of Terra/ASTER/VNIR with desert scenes together with cross calibration [9218-26]</td>
</tr>
<tr>
<td>9218 0S</td>
<td>ASTER/TIR vicarious calibration activities in US and Japan validation sites for 14 years [9218-27]</td>
</tr>
<tr>
<td>9218 0T</td>
<td>Review of Terra MODIS thermal emissive band L1B radiometric performance [9218-28]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>EOS TERRA III</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 0V</td>
<td>Corrections to MODIS Terra calibration and polarization trending derived from ocean color products [9218-30]</td>
</tr>
<tr>
<td>9218 0W</td>
<td>Comparison of coincident MODIS and MISR reflectances over the 15-year period of EOS Terra [9218-31]</td>
</tr>
<tr>
<td>9218 0X</td>
<td>Cross-calibration of Earth Observing System Terra satellite sensors MODIS and ASTER [9218-32]</td>
</tr>
<tr>
<td>9218 0Y</td>
<td>The absolute radiometric calibration of Terra imaging sensors: MODIS, MISR, andASTER [9218-33]</td>
</tr>
<tr>
<td>SESSION 8</td>
<td>PRE-LAUNCH CALIBRATION</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>9218 0Z</td>
<td>Validation of spectral radiance assignments to integrating sphere radiance standards for the Advanced Baseline Imager [9218-34]</td>
</tr>
<tr>
<td>9218 10</td>
<td>Improved thermal-vacuum compatible flat plate radiometric source for system-level testing of optical sensors [9218-35]</td>
</tr>
<tr>
<td>9218 11</td>
<td>Diffuser properties and according performance in BSDF and spectral features in space application [9218-36]</td>
</tr>
<tr>
<td>9218 12</td>
<td>BRDF characterization of solar diffuser for JPSS J1 using PASCAL [9218-37]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 9</th>
<th>LANDSAT 8 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 15</td>
<td>Landsat-8 Operational Land Imager on-orbit radiometric calibration and stability [9218-40]</td>
</tr>
<tr>
<td>9218 16</td>
<td>On-orbit performance of the Landsat 8 Operational Land Imager [9218-41]</td>
</tr>
<tr>
<td>9218 17</td>
<td>Performance of the Thermal Infrared Sensor on-board Landsat 8 over the first year on-orbit [9218-42]</td>
</tr>
<tr>
<td>9218 18</td>
<td>Landsat 8 Operational Land Imager (OLI) detector-to-detector uniformity challenge and performance [9218-43]</td>
</tr>
<tr>
<td>9218 19</td>
<td>The absolute radiometric calibration of the Landsat 8 Operational Land Imager using the reflectance-based approach and the Radiometric Calibration Test Site (RadCaTS) [9218-44]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 10</th>
<th>LANDSAT 8 II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 1A</td>
<td>Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands [9218-45]</td>
</tr>
<tr>
<td>9218 1B</td>
<td>Landsat-8 data processing evolution [9218-46]</td>
</tr>
<tr>
<td>9218 1C</td>
<td>European Space Agency (ESA) Landsat MSS/TM/ETM+ Archive Bulk-Processing: processor improvements and data quality [9218-47]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 11</th>
<th>NEW MISSIONS AND INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9218 1D</td>
<td>EUMETSAT programmes and plans [9218-48]</td>
</tr>
<tr>
<td>9218 1E</td>
<td>Copernicus Sentinel-2 mission: products, algorithms and Cal/Val [9218-49]</td>
</tr>
<tr>
<td>9218 1F</td>
<td>The CarbonSat candidate mission: imaging greenhouse gas concentrations from space [9218-50]</td>
</tr>
<tr>
<td>9218 1G</td>
<td>Design validation for ICESat-2 space-based laser transmitter [9218-51]</td>
</tr>
</tbody>
</table>
SESSION 12 MODIS ON-OBJECT PERFORMANCE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>The GeoTASO airborne spectrometer project [9218-52]</td>
</tr>
<tr>
<td>21</td>
<td>Remote sensing capabilities of the GEO-CAPE airborne simulator [9218-53]</td>
</tr>
<tr>
<td>21</td>
<td>SESSION 12 MODIS ON-OBJECT PERFORMANCE</td>
</tr>
<tr>
<td>21</td>
<td>Monitoring the Terra and Aqua MODIS RSB calibration using scattered light from the Nadir-port [9218-54]</td>
</tr>
<tr>
<td>21</td>
<td>Progress on alternative method of the on-orbit RVS characterization for MODIS reflective solar bands [9218-55]</td>
</tr>
<tr>
<td>21</td>
<td>Evaluation of Terra and Aqua MODIS thermal emissive band response versus scan angle [9218-56]</td>
</tr>
<tr>
<td>21</td>
<td>Calibration impact assessment of MODIS spectral band location on the focal plane assemblies [9218-57]</td>
</tr>
</tbody>
</table>

POSTER SESSION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Examination of the angular dependence of the SNPP VIIRS solar diffuser BRDF degradation factor [9218-58]</td>
</tr>
<tr>
<td>21</td>
<td>Status of time-dependent response versus scan-angle (RVS) for Terra and Aqua MODIS reflective solar bands [9218-60]</td>
</tr>
<tr>
<td>21</td>
<td>Development of 2D deconvolution method to repair blurred MTSAT-1R visible imagery [9218-61]</td>
</tr>
<tr>
<td>21</td>
<td>Correction method of physical temperature variation for airborne double-antenna microwave radiometer [9218-62]</td>
</tr>
<tr>
<td>21</td>
<td>Design of the precise uniform light source based on optically connected integrating spheres for VIIR calibration [9218-64]</td>
</tr>
<tr>
<td>21</td>
<td>CLARREO calibration uncertainty assessment tool: status and path forward [9218-65]</td>
</tr>
<tr>
<td>21</td>
<td>Post-launch performance evaluation of the OMPS Nadir Mapper and Nadir Profiler [9218-66]</td>
</tr>
<tr>
<td>21</td>
<td>Using the Moon to evaluate the radiometric calibration performance of S-NPP VIIRS thermal emissive bands [9218-67]</td>
</tr>
<tr>
<td>21</td>
<td>Comparing Hyperion Lunar Observation with model calculations in support of GOES-R Advanced Baseline Imager (ABI) calibration [9218-68]</td>
</tr>
<tr>
<td>21</td>
<td>Technology demonstrator of radiation resistant photon counting detector [9218-71]</td>
</tr>
</tbody>
</table>
Developing an automated global validation site time series system for VIIRS [9218-74]

Statistical analysis of the electronic crosstalk correction in Terra MODIS Band 27 [9218-75]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abbott, Elsa, 0S
Anderson, Nikolaus, 0Y, 19
Angal, Amit, 0K, 0O, 0W, 1J, 1K, 1P
Arai, K., 0R
Aumann, Hartmut H., 0D, 0E, 0F
Bai, Yan, 23
Barnes, William L., 0O
Barsi, Julia A., 15, 16, 17, 18, 1B
Beach, Eric, 1V
Behrangi, Ali, 0E
Bézy, Jean-Loup, 1F
Bhatt, Rajendra, 0H
Biasutti, R., 1C
Biggar, Stuart, 0Y, 19
Blazej, Josef, 20
Blonski, Slawomir, 0I
Borovytsky, Volodymyr, 1T
Bovensmann, H., 1F
Brown, Steven W., 10
Bruegge, Carol J., 0N
Buchwitz, Michael, 1F
Burns, Patrick M., 1G
Butler, James, 1U
Cadau, E., 1E
Cao, Changyong, 0I, 1X, 23
Caron, Jérôme, 1F
Case, Warren, 0M
Chance, K., 1H
Chen, Hongda, 0O, 1K, 1P, 1W
Chen, Na, 0O
Chen, Xuejia, 03
Chiang, Vincent Kwofu, 08, 1N
Choate, Mike J., 1B
Choi, Taeyoung, 1X
Chuang, Ti, 1G
Colin, O., 1E
Czapla-Myers, Jeffrey, 0Y, 15, 19
Dabney, Philip, 1B
Daniels, Janet L., 02
Dean, V., 0P
Deeter, M. N., 0P
Deiker, T., 1H
Di Girolamo, Larry, 0N
Diner, David J., 0N
Dodd, Jennifer L., 0O
Doelling, David R., 0H, 1Q
Edwards, D. P., 0P
Edwards, Ryan E., 1G
Efremova, Boryana V., 0G, 1U, 1W
Elliott, Denis A., 0D
Emmons, L. K., 0P
Eplee, Robert E., 0V
Fakhouri, Elias, 1G
Ferrara, R., 1C
Fischer, P., 1C
Flynn, Larry, 1V
Franz, Bryan A., 0V
Frouin, Robert, 06
Fulbright, Jon P., 04
Galli, L., 1C
Gascon, F., 1C, 1E
Geng, Xu, 0O, 1J, 1K, 1P
Gerace, Aaron, 1A
Gille, J. C., 0P
Good, W., 1H
Gopalan, Arun, 0H
Graham, Gary D., 0Z
Gray, Ellyn, 0N
Grotenhuis, Michael G., 1V
Gu, Lingji, 1R
Gür, Bilgehan, 11
Haney, Conor, 0H
Haque, Md. Obaidul, 15
Hauss, Bruce, 06
Heldr, Dennis, 0K, 15
Hess, Philip C., 02
Hoersch, B., 1C, 1E
Holmlund, Kenneth, 1D
Hook, Simon J., 0S
Hopkins, S., 1C
Hovis, Floyd E., 1G
Iacangelo, Sean, 0O
Ientilucci, Emmett, 1A
Isola, C., 1E
Jackson, J., 1C
Janz, Scott J., 1H, 1I
Jiang, Tao, 1R
Johnson, B. Carol, 0Z
Johnson, Lindsay, 12
Jovanovic, Veljko, 0N
Kaila, Edward, 15
Kato, Soushi, 0S
Kelly, Angelita, 0M
Kent, Craig J., 10
Khlopenkov, Konstantin V., 1Q
Klaus, K. Dieter, 1D
Kodet, Jan, 20
Kowalewski, Matthew G., 1H, 1I

Proc. of SPIE Vol. 9218 921801-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Krotkov, N. A., 1H
Lavender, S., 1C
Lee, Shihyan, 08, 0A
Lei, Ning, 03, 1N
Leitch, J. W., 1H
Levy, Raviv, 16, 18
Li, Yonghong, 0O, 1P
Lin, Chungsan, 10
Link, Daniel O., 0O, 1P
Litvinovitch, Slava, 1G
Liu, X., 1H
López Fernández, B., 1E
Löscher, Armin, 1F
Lunsford, Allen W., 17, 1A
Madhavan, Sriharsha, 0O, 1L, 24
Manning, Evan M., 0E, 0F
Mantziaras, Dimitrios, 0M
Mao, D., 0P
Markham, Brian L., 15, 17, 18
Marlimott, P., 1E
Martínez-Alonso, S., 0P
Matsunaga, Tsuneo, 0S
Maxwell, Stephen, 0Z
McCorkel, J., 0X
McIntire, Jeff, 0A
Meijer, Yasjka, 1F
Meister, Gerhard, 0V
Menzel, W. Paul, 0T
Mica, S., 1C
Micijevic, Esad, 16, 18
Mikheenko, Leonid, 1T
Miller, Steven D., 09
Mills, Stephen, 09, 0C
Minnis, Patrick, 0H
Mironovich, Valentine, 1T
Mishra, Nischal, 0K, 15
Moeller, Chris, 0T
Montanaro, Matthew, 17
Morfit, Ron A., 16, 18
Moskun, Eric M., 12
Moyer, Eric, 0M
Murcray, F., 1H
Murgai, Vijay, 12
Niu, Jianguo, 1V
Northrop, A., 1C
Nowlan, C., 1H
Okuyama, Arata, 1Q
Ong, Lawrence, 15
Oudrari, Hassan, 0A
Paciucci, A., 1C
Padula, Frank, 1X, 23
Pahlevan, Nima, 15
Paul, F., 1C
Pesta, Frank, 18
Pickering, K. E., 1H
Pinori, S., 1C
Pratt, Patty, 06
Priestley, Kory J., 02, 0Q
Prochazka, Ivan, 20
Quinn, Greg, 0T
Raqueno, Nina, 1A
Raqueno, Rolando, 1A
Rohrbach, Scott, 17
Rudd, William J., 1G
Ruppert, L., 1H
Salomonson, Vince, 0O
Saunier, S., 1C
Sawruk, Nicholas W., 1G
Scaramuzza, Pat, 16, 18
Scarnio, Benjamin, 0H
Schott, John R., 1A
Schwarz, Mark A., 10
Sei, Alain, 06
Shankar, Mohan, 02, 0Q
Shao, Xi, 1X, 23
Shirley, Eric, 0Z
Sierk, Bernd, 1F
Slack, Kim, 0Z
Smith, Nathaniel P., 02
Smith, Nitchie, 0Q
Sun, Chengbo, 08
Sun, Jian, 1R
Sun, Junqiang, 1J, 1P, 24
Szewczyk, Z. Peter, 02
Tan, Howard, 0S
Thomas, Susan, 02, 0Q
Thorne, Curtts, 0Y, 19
Tonooka, Hideyuki, 0S
Upreti, Sirsh, 0I, 1X, 23
Val, Sebastian, 0N
van Brug, Hedser, 11
Vanderwerff, Kelly, 16
VanTuijl, André, 1G
Vela, Elizabeth, 11
Wallkainen, Dale R., 02, 0Q
Wang, J., 1H
Wang, Wenhui, 0I, 23
Wang, Zhipeng, 04, 1M, 1W
Wenny, Brian N., 0O, 1L, 24
Wilson, Robert S., 02
Woodward, John T., 10
Worden, H. M., 0P
Wu, Aisheng, 0G, 0O, 0W, 1K, 1L, 1P, 1U, 1W, 24
Wu, Xianggian, 1V
Wysocki, Theodore, 1G
Xiong, Xiaoshun Jack, 03, 04, 0B, 0A, 0G, 0K, 0O, 0W, 1J, 1K, 1L, 1M, 1N, 1P, 1U, 1W, 24
Xu, Man, 11
Yu, Wei, 1V
Zhao, Guangyu, 0N
Zhao, Kai, 1R
Conference Committee

Program Track Chair

Allen H.-L. Huang, University of Wisconsin-Madison (United States)

Conference Chairs

James J. Butler, NASA Goddard Space Flight Center (United States)
Xiaoxiong (Jack) Xiong, NASA Goddard Space Flight Center (United States)
Xingfa Gu, Institute of Remote Sensing Applications (China)

Conference Program Committee

Philip E. Ardanuy, Raytheon Intelligence & Information Systems (United States)
Robert A. Barnes, NASA Goddard Space Flight Center (United States)
Hal J. Bloom, Science & Technology Corporation (United States)
Jeffrey S. Czapla-Myers, College of Optical Sciences, The University of Arizona (United States)
Armin Doerry, Sandia National Laboratories (United States)
Christopher N. Durell, Labsphere, Inc. (United States)
Mitchell D. Goldberg, National Environmental Satellite, Data, and Information Service (United States)
Joel McCorkel, NASA Goddard Space Flight Center (United States)
Thomas S. Pagano, Jet Propulsion Laboratory (United States)
Jeffery J. Puschell, Raytheon Space & Airborne Systems (United States)
Carl F. Schueler, Schueler Consulting-Santa Barbara (United States)

Session Chairs

1 Soumi NPP I
 Jim Butler, NASA Goddard Space Flight Center (United States)

2 Soumi NPP II
 Hal J. Bloom, Science & Technology Corporation (United States)

3 Instrument Cross-Comparisons and Vicarious Calibration I
 Mitchell D. Goldberg, National Environmental Satellite, Data, and Information Service (United States)
4 Instrument Cross-Comparisons and Vicarious Calibration II
Jeffrey S. Czapla-Myers, College of Optical Sciences, The University of Arizona (United States)

5 EOS Terra I
Thomas S. Pagano, Jet Propulsion Laboratory (United States)

6 EOS Terra II
Carl F. Schueler, Schueler Consulting-Santa Barbara (United States)

7 EOS Terra III
Jeffery J. Puschell, Raytheon Space & Airborne Systems (United States)

8 Pre-Launch Calibration
Christopher N. Durell, Labsphere, Inc. (United States)

9 Landsat 8 I
Joel McCorkel, NASA Goddard Space Flight Center (United States)

10 Landsat 8 II
Xiaoxiong (Jack) Xiong, NASA Goddard Space Flight Center (United States)

11 New Missions and Instruments
Philip E. Ardanuy, Raytheon Intelligence & Information Systems (United States)

12 MODIS On-Orbit Performance
James J. Butler, NASA Goddard Space Flight Center (United States)