Translator Disclaimer
21 October 2014 A new approach for agroecosystems monitoring using high-revisit multitemporal satellite data series
Author Affiliations +
With increasing population pressure throughout the world and the need for increased agricultural production there is a definite need for improved management of the world's agricultural resources. Comprehensive, reliable and timely information on agricultural resources is necessary for the implementation of effective management decisions. In that sense, the demand for high-quality and high-frequency geo-information for monitoring of agriculture and its associated ecosystems has been growing in the recent decades. Satellite image data enable direct observation of large areas at frequent intervals and therefore allow unprecedented mapping and monitoring of crops evolution. Furthermore, real time analysis can assist in making timely management decisions that affect the outcome of the crops. The DEIMOS-1 satellite, owned and operated by ELECNOR DEIMOS IMAGING (Spain), provides 22m, 3-band imagery with a very wide (620-km) swath, and has been specifically designed to produce high-frequency revisit on very large areas. This capability has been proved through the contracts awarded to Airbus Defence and Space every year since 2011, where DEIMOS-1 has provided the USDA with the bulk of the imagery used to monitor the crop season in the Lower 48, in cooperation with its twin satellite DMCii’s UK-DMC2. Furthermore, high density agricultural areas have been targeted with increased frequency and analyzed in near real time to monitor tightly the evolution. In this paper we present the results obtained from a campaign carried out in 2013 with DEIMOS-1 and UK-DMC2 satellites. These campaigns provided a high-frequency revisit of target areas, with one image every two days on average: almost a ten-fold frequency improvement with respect to Landsat-8. The results clearly show the effectiveness of a high-frequency monitoring approach with high resolution images with respect to classic strategies where results are more exposed to weather conditions.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
M. Diez, C. Moclán, A. Romo, and F. Pirondini "A new approach for agroecosystems monitoring using high-revisit multitemporal satellite data series", Proc. SPIE 9239, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI, 92391I (21 October 2014);

Back to Top