You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 October 2014A reliable methodology for monitoring unstable slopes: the multi-platform and multi-sensor approach
1Univ. of Modena and Reggio Emilia (Italy) 2GEIS – Geomatics Engineering Innovative Solutions Srl (Italy) 3Univ. degli Studi di Modena e Reggio Emilia (Italy)
High resolution topography, by involving Digital Terrain Models (DTMs) and further accurate techniques for a proper displacement identification, is a valuable tool for a good and reliable description of unstable slopes. By comparing multitemporal surveys, the geomorphology of a landslide may be analyzed as well as the changes over time, the volumes transportation and the boundaries evolution. Being aware that a single technique is not sufficient to perform a reliable and accurate survey, this paper discusses the use of multi-platform, multi-source and multi-scale observations (both in terms of spatial scale and time scale) for the study and monitoring of unstable slopes. The final purpose is to highlight and validate a methodology based on multiple sensors and data integration, useful to obtain a comprehensive GIS (Geographic Information System) which can successfully be used to manage natural disasters or to improve the knowledge of a specific phenomenon in order to prevent and mitigate the hydro-geological risk. The novelty of the present research lies in the spatial integration of multiple remote sensing techniques such as: integration of Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) to provide a comprehensive and accurate surface description (DTM) at a fixed epoch (spatial continuity); continuous monitoring by means of spatial integration of Automated Total Station (ATS) and GNSS (Global Navigation Satellite System) to provide accurate surface displacement identification (time continuity). Discussion makes reference to a rockslide located in the northern Apennines of Italy from 2010 to 2013.