7 October 2014 Possibility of the detection and identification of substance at long distance at using broad THz pulse
Author Affiliations +
Abstract
The spectral properties of THz pulses containing a few cycles reflected from a flat metallic mirror placed at long distance about 3.5 meters from the parabolic mirror are investigated. The samples for analysis were placed before this mirror. Measurements were provided at room temperature of about 18-20° C and humidity of about 70%. The aim of investigation was the detection of a substance under real conditions. At the present time our measurements contain features of both transmission and reflection modes. This leads to a strong modulation of the spectrum and makes difficulties for identification. As samples for our current research we used several neutral substances: paper layers, a thick paper bag, chocolate and cookies. The first problem deals with the detection of common and mismatched spectral properties of samples with paper layers, a thick paper bag and explosives. HMX, PETN and RDX were used as explosive samples. The dependence of the accuracy of identification of samples with paper layers and a thick bag is studied when using short transmitted THz signals with opposite absolute phases as calibration signals. Common and mismatched spectral features of neutral substances: chocolate, cookies and drugs MA, MDMA were investigated by modified integral criteria as well.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vyacheslav A. Trofimov, Svetlana A. Varentsova, Vladislav V. Trofimov, "Possibility of the detection and identification of substance at long distance at using broad THz pulse", Proc. SPIE 9253, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI, 925308 (7 October 2014); doi: 10.1117/12.2064354; https://doi.org/10.1117/12.2064354
PROCEEDINGS
17 PAGES


SHARE
Back to Top