7 October 2014 Track-based event recognition in a realistic crowded environment
Author Affiliations +
Abstract
Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jasper R. van Huis, Jasper R. van Huis, Henri Bouma, Henri Bouma, Jan Baan, Jan Baan, Gertjan J. Burghouts, Gertjan J. Burghouts, Pieter T. Eendebak, Pieter T. Eendebak, Richard J. M. den Hollander, Richard J. M. den Hollander, Judith Dijk, Judith Dijk, Jeroen H.C. van Rest, Jeroen H.C. van Rest, "Track-based event recognition in a realistic crowded environment", Proc. SPIE 9253, Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI, 92530E (7 October 2014); doi: 10.1117/12.2066081; https://doi.org/10.1117/12.2066081
PROCEEDINGS
7 PAGES


SHARE
Back to Top