Land Surface Remote Sensing II

Thomas J. Jackson
Jing Ming Chen
Peng Gong
Shunlin Liang
Editors

13–16 October 2014
Beijing, China

Sponsored by
SPIE

Cosponsored by
State Key Laboratory of Remote Sensing Science (China)
NASA—National Aeronautics and Space Administration (United States)
Ministry of Earth Sciences (India)

Cooperating Organizations
Institute of Remote Sensing and Digital Earth (China) • JAXA—Japan Aerospace Exploration Agency (Japan) • NICT—National Institute of Information and Communications Technology (Japan) • ISRO—Indian Space Research Organization (India) • National Satellite Meteorological Center (China) • State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (China) • State Key Laboratory of Resources and Environmental Information System (China) • Center For Earth System Science, Tsinghua University (China) • College of Global Change and Earth System Science, Beijing Normal University (China) • Key Laboratory of Digital Earth Science (China)

Published by
SPIE

Part One of Two Parts

Volume 9260

Proceedings of SPIE 0277-786-786X, V.9260

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9781628413274

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2014, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/14/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
Contents

xi Authors
xv Symposium Committees
xvii Conference Committee

Part One

SESSION 1 VEGETATION AND CROPS

9260 02 Monitoring phenological stages of swiddening in northern Laos during the dry season [9260-1]
9260 03 Crop growth dynamics modeling using time-series satellite imagery [9260-163]
9260 04 Crop classification based on multi-temporal satellite remote sensing data for agro-advisory services [9260-3]
9260 05 Crop classification using multi-temporal HJ satellite images: case study in Kashgar, Xinjiang [9260-4]
9260 06 Inversion of a radiative transfer model for estimation of rice chlorophyll content using support vector machine [9260-5]

SESSION 2 URBAN

9260 07 Unsupervised building extraction using remote sensing data to detect changes in land use [9260-6]
9260 0A Simulation of urban land surface temperature based on sub-pixel land cover in a coastal city [9260-10]

SESSION 3 SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

9260 0D Passive/active microwave soil moisture retrieval disaggregation using SMAPVEX12 data [9260-13]

SESSION 4 SNOW

9260 0L Determination of snow cover for the Tibetan Plateau (1983-1999) from NOAA-AVHRR LTDR [9260-21]
SESSION 5 SOIL MOISTURE I

9260 0O Inter-comparison of soil moisture products from SMOS, AMSR-E, ECWMF and GLDAS over the Mongolia Plateau [9260-24]

9260 0P Comparison between microwave coherent and incoherent scattering models for wetland vegetation in Poyang Lake area [9260-25]

9260 0Q Simulation of microwave brightness temperature over heterogeneous land surface using L-MEB model in HIWATER [9260-26]

9260 0R A new algorithm for phase transition water content retrieval during soil freeze-thaw process using microwave radiometer [9260-27]

SESSION 6 SOIL MOISTURE II

9260 0S Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012 [9260-170]

9260 0T Rough surface effects on active and passive microwave remote sensing of soil moisture at L-band using 3D fast solution of Maxwell's equations [9260-29]

9260 0U Soil moisture content inversion research using multi-source remote sensing data [9260-30]

9260 0W Co-location decision tree model for extracting exposed carbonate rocks in karst rocky desertification area [9260-80]

9260 0X Dual state-parameter estimation of land surface model through assimilating microwave brightness temperature [9260-32]

SESSION 7 LAND SURFACE TEMPERATURE

9260 0Y A novel interpolation method for MODIS land surface temperature data on the Tibetan Plateau [9260-33]

9260 0Z Time-series monitoring result of land surface temperature variation at Mt. Baekdu using Landsat images [9260-34]

9260 11 Production of large area LST products of HJ-1B IRS based on a fusion framework [9260-35]

9260 13 Estimate of land surface temperature from MTSAT-1R observations [9260-37]

9260 15 Land surface thermal environment during heat wave event measured by satellite observation [9260-142]
SESSION 8 SOILS

9260 17 Soil aggregate stability and wind erodible fraction in a semi-arid environment of White Nile State, Sudan [9260-40]

9260 18 Angkor site monitoring and evaluation by radar remote sensing [9260-41]

SESSION 9 LAND SURFACE CHANGE AND SUBSIDENCE

9260 1C Small baseline subsets approach of DInSAR for investigating land surface deformation along the high-speed railway [9260-45]

9260 1D A study of mining-induced subsidence in Hebi coalfield based on D-InSAR [9260-46]

SESSION 10 HYDROLOGIC VARIABLES AND STATES

9260 1G Estimation evapotranspiration over the large landscape by using remote sensing data [9260-50]

9260 1H Detecting terrestrial water storage variations in northwest China by GRACE [9260-51]

SESSION 11 FORESTS

9260 1L A spectral index for highlighting forest cover from remotely sensed imagery [9260-105]

9260 1M Monitoring expansion of plantations in Lao tropical forests using Landsat time series [9260-56]

9260 1O The microwave emission and transmission characters of deciduous forest at L-band [9260-58]

9260 1P Forest canopy growth dynamic modeling based on remote sensing products and meteorological data in Daxing'anling of Northeast China [9260-59]

SESSION 12 BIOMASS AND NPP

9260 1S A novel high resolution wide swath SAR based on waveform design [9260-150]

9260 1T Multiscale geostatistical analysis of sampled above-ground biomass and vegetation index products from HJ-1A/B, Landsat, and MODIS [9260-62]

9260 1V Mapping afforestation and forest biomass using time-series Landsat stacks [9260-65]
SESSION 13 LAND COVER AND CLIMATE CHANGE

9260 21 Satellite image time series clustering under collaborative principal component analysis [9260-70]

SESSION 14 LAND REMOTE SENSING TOPICS

9260 22 A target detection method with morphological knowledge for high-spatial resolution remote sensing image applying for search and rescue in aviation disaster [9260-72]
9260 23 A methodology to estimate representativeness of LAI station observation for validation: a case study with Chinese Ecosystem Research Network (CERN) in situ data [9260-73]
9260 24 LAand surface remote sensing Products Validation System (LAPVAS) and its preliminary application [9260-74]

POSTER SESSION

9260 26 A new method to inverse soil moisture based on thermal infrared and passive microwave remote sensing [9260-28]
9260 28 Variational level set segmentation for forest based on MCMC sampling [9260-76]
9260 2C A method for quickly extracting seismogeological hazards in Yingxiu, Sichuan Province, China [9260-81]
9260 2G Land surface phenology detection with multisource remote sensing data: a comparative analysis [9260-85]
9260 2H Trends of NDVI, precipitation and their relationship in different forest ecological zone of China during 1982 to 2006 [9260-86]

Part Two

9260 2I Remote sensing change detection study based on adaptive threshold in pixel ratio method [9260-87]
9260 2J Simulation of regional rice growth by combination remote sensing data and crop model [9260-88]
9260 2L Winter wheat field transformation monitoring through remote sensing in Beijing suburb [9260-90]
9260 2M Spatio-temporal pattern of NPP and related analyses with terrain factors in Wuling mountainous area [9260-91]
9260 2N Estimate the soil moisture over semi-arid region of Loess Plateau using Radarsat-2 SAR data [9260-92]
Analysis on vegetation changes of Maqu alpine wetlands in the Yellow River source region [9260-94]

Dynamic changes of ecosystem service value of water conversation based on time series Landsat images [9260-95]

Study on interferometric combination for multi-temporal InSAR optimization [9260-96]

Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity [9260-97]

Study on soil erosion in Hudan River basin based on TM imagery [9260-98]

Temporal and spatial analysis of vegetation coverage changes in Ordos area based on time series GIMMS-NDVI data [9260-100]

Spectral data analysis of rock and mineral in Hatu Western Junggar Region, Xinjiang [9260-101]

Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER [9260-103]

Rural impervious surfaces extraction from Landsat 8 imagery and rural impervious surface index [9260-107]

Integration of remote sensing (RS) and geographic information system (GIS) techniques for change detection of the land use and land cover (LULC) for soil management in the southern Port Said region, Egypt [9260-109]

Analysis of light use efficiency and gross primary productivity based on remote sensing data over a phragmites-dominated wetland in Zhangye, China [9260-110]

Assessment of ecological security in Changbai Mountain Area, China based on MODIS data and PSR model [9260-112]

Comparison of analogous terrestrial and Martian drainage systems: a remote sensing based study [9260-113]

A method for monitoring land-cover disturbance using satellite time series images [9260-116]

Dynamic monitoring of lake based on HJ-CCD Images: a case study of Poyang Lake [9260-117]

The dynamic monitoring of coal resources exploitation in the ecological function regionalization of Hulun Buir City based on remote sensing [9260-121]

Comparison of Huanjing and Landsat satellite remote sensing of the spatial heterogeneity of Qinghai-Tibet alpine grassland [9260-122]

Comparison of the sensor dependence of vegetation indices and vegetation water indices based on radiative transfer model [9260-124]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>Snow cover mapping over China using FY-2 and MTSAT-2 data</td>
<td>[9260-125]</td>
<td></td>
</tr>
<tr>
<td>3I</td>
<td>Estimation of forest biomass by integrating ALOS PALSAR And HJ-1B data</td>
<td>[9260-126]</td>
<td></td>
</tr>
<tr>
<td>3N</td>
<td>Snow cover correlation between Mt. Villarrica and Mt. Lliama in Chile</td>
<td>[9260-131]</td>
<td></td>
</tr>
<tr>
<td>3P</td>
<td>Remote sensing albedo product validation over heterogeneity surface based on WSN: preliminary results and its uncertainty</td>
<td>[9260-133]</td>
<td></td>
</tr>
<tr>
<td>3Q</td>
<td>Estimation of aboveground woody biomass using HJ-1 and Radarsat-2 data for deciduous forests in Daxing'anling, China</td>
<td>[9260-134]</td>
<td></td>
</tr>
<tr>
<td>3R</td>
<td>Estimating the seasonal maximum light use efficiency</td>
<td>[9260-136]</td>
<td></td>
</tr>
<tr>
<td>3S</td>
<td>A bag-of-visual-words model based framework for object-oriented land-cover classification</td>
<td>[9260-137]</td>
<td></td>
</tr>
<tr>
<td>3T</td>
<td>Comparison of chemical analysis results of the Khangal River pollution with LandSat satellite data</td>
<td>[9260-138]</td>
<td></td>
</tr>
<tr>
<td>3U</td>
<td>The relationship between vegetation supply water index and forest resource of Bogd Khaan Mountain in the Mongolia</td>
<td>[9260-139]</td>
<td></td>
</tr>
<tr>
<td>3V</td>
<td>Change detection of polarimetric SAR images based on the KummerU Distribution</td>
<td>[9260-140]</td>
<td></td>
</tr>
<tr>
<td>3W</td>
<td>A method of fast mosaic for massive UAV images</td>
<td>[9260-141]</td>
<td></td>
</tr>
<tr>
<td>3X</td>
<td>Monitoring coastal land reclamation and land use change around Hangzhou Bay using Landsat dataset (1970s-2014)</td>
<td>[9260-143]</td>
<td></td>
</tr>
<tr>
<td>3Y</td>
<td>Variability of change detection results for 2011 Tohoku, Japan earthquake using very high-resolution satellite images</td>
<td>[9260-145]</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Analysis on the electromagnetic scattering properties of crops at multi-band</td>
<td>[9260-148]</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Evaluation of the harmonic-analysis method for surface soil heat flux estimation: a case study in Heihe River Basin</td>
<td>[9260-151]</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>The propagation of VLF wave in layered earth-ionosphere waveguide</td>
<td>[9260-152]</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Monitoring the carbon storage change in Tonghua City of Changbai mountain area</td>
<td>[9260-153]</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>A nearly real-time UAV video flow mosaic method</td>
<td>[9260-157]</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>The research by topographic correction methods of airborne hyperspectral remote sensing data based on DEM</td>
<td>[9260-158]</td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>Digital Earth system based river basin data integration</td>
<td>[9260-160]</td>
<td></td>
</tr>
</tbody>
</table>
Fractional vegetation cover estimation over large regions using GF-1 satellite data

Thermal anomaly before earthquake and damage assessment using remote sensing data for 2014 Yutian earthquake

Eco-geological environment assessment of Datong Basin using satellite remote sensing

Estimation of soil erosion in Selenge and Darkhan Provinces of Mongolia

National level biomass database comparison for Mexico in relation to vegetation degradation stages

Analysis between AMSR-E swath brightness temperature and snow cover area in winter time over Sierra Nevada, Western U.S.

Three-dimensional range-gated flash LIDAR for land surface remote sensing

Spatial distributing characteristics of land use in the southern slope of mid-Himalaya Mountains
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Adam, Hassan Elnour, 17
Ao, Weijiu, 30
Arik, Yasuo, 3Y
Batbayar, J., 3U
Battulga, N., 4G
Bi, Jiantao, 2C
Cao, Yanping, 1H
Cao, Yinan, 4L
Chai, Linna, 0R, 2X
Chao, Zhenhua, 0S
Chen, Feng, 15
Chen, Fulong, 18
Chen, Liang, 0S
Chen, Xin, 2Q
Chen, Xiaoling, 1L, 2H
Chen, Xiaoning, 22
Chen, Xiaoping, 3G
Chen, Xin, 2Q
Chen, Yohui, 2Q
Chen, Yu, 2C
Chen, Zeyuan, 2I
Cheng, Jie, 4E
Cheng, Xiao, 4D
Chu, Lin, 2O
Clarke, Kenneth, 1M
Csaplovics, Elmar, 17
Cui, Fangnin, 2L
Cui, Wei, 4L
Daigo, Motomasa, 3R
Deng, Jinsong, 30, 3X
Deng, Lei, 0A
Dou, Baocheng, 24, 3P
Elhaja, Mohamed Eltom, 17
Erkhembayar, T., 4G
Fan, Songtao, 4L
Fang, Bin, 0D
Fang, Ying, 4D
Fei, Dunyue, 1G, 2J
Feng, Feng X., 2M, 2R
Feng, Huilu, 0A
Feng, Zhiming, 02
Fu, Xiuli, 1O
Furumi, Shinobu, 3R
G., Sujita, 3S
Gan, Yuey, 3X
Gao, Lianru, 22
Gao, Xiaohong, 2S
Gao, Yan, 4l
Gao, Yanghua, 2J
Gong, Fang, 39
Gu, Xiaohong, 2L, 2P
Guo, Huadong, 2G
Guo, Jianmiao, 1G, 2J
Guo, N., 2N
Guo, Qile, 1G
Guo, Wei, 2P
Guo, Y. G., 3I
Guo, Yamin, 4E
Han, Ruimei, 2U
Hao, Pengyu, 05
Hassan, Mohamed Abd El Rehim Abd El Aziz, 32
Hassani, Nemat, 3Y
He, J., 3I
Hong, Wei, 2Q
Hu, Changmiao, 11
Hu, D., 2N
Hu, Yong, 1F
Hua, Yiming, 3X
Huang, Chong, 2O
Huang, Fang, 34, 45
Huang, Haiqing, 39
Huang, Haiying, 4D
Huang, Lin, 2B
Huang, Lingyan, 3X
Hu, Jian-Zhi, 3S
Ibrahim, Ibrahim Saeed, 17
Ishwaran, Natarajan, 18
Jagyas, Bhushan, 04
Jiang, Aihui, 18
Jiang, Cheng, 3W, 48
Jiang, Chuan-xian, 28
Jiang, Guoqing, 33
Jiang, Hailing, 3G
Jiang, Lingmei, 0Q, 26, 3H
Jiang, Zaisen, 4D
Jung, Hyung-Sup, 0Z, 3N
Kaihotosu, Ichirou, 00
Karale, Yogita, 04
Kim, Jeong-Cheol, 3N
Koike, Toshio, 0O
Kou, Xiaokang, 0Q, 26
Lakshmi, Venkat, 0D
Lei, Yonghui, 0X
Lewis, Megan, 1M
Li, Chengwei, 0O
Li, Dachong, 4B
Li, Dongyang, 0X
Li, Haiying, 44
Wang, Siyuan, OL
Wang, X. Y., 3I
Wang, Xinwei, 4L
Wang, Xu, 2Q
Wang, Yanbing, 2Q
Wang, Youfu, 30
Wang, Zhihui, 1V
Wang, Zhiwei, 0Y
Wei, Jingyi, 06
Wen, Jianguang, 24, 3P
Wen, Xin, 0O
Wu, Qiaoli, 1P
Wu, Tao, 41
Wu, Tonghua, 0Y
Wu, Xiaodan, 24, 3P
Wu, Zhensen, 41, 44
Xia, Wei, 3D
Xiang, Ren, 3W, 48
Xiao, Qing, 3P
Xiao, Xiao, 2M
Xiao, Zhiquiang, 1P
Xiaoying, Ouyang, 13
Xin, Weidong, 2I
Xu, Baodong, 23
Xu, Tao, 0P
Xu, Xingang, 2L
Xu, Ziwei, 33
Yan, Lishuang, 45
Yan, Shuang, 0Q, 3H
Yan, Zhenguo, 06
Yang, Juntao, 0Q, 3H
Yang, Le, 3Q
Yang, Song, 15
Yang, Tie-Jun, 2B
Yang, Ting, 2H
Yang, Xuefei, 39
Yang, Yongshun, 2S
Ye, Qinbu, 0R
Ye, Wentao, 1L
Yin, Gaofei, 23
Yin, Hang, 0L
Yin, Xiaojun, 4K
You, Shucheng, 30, 3X
Yu, Bo, 07
Yu, Haoyang, 22
Yu, Wenjun, 0Y
Yu, Zherui, 0T
Yu, Zhoulu, 30
Yuan, Yu, 1O
Zeng, Yeli, 23
Zhan, Jie, 44
Zhan, Yulin, 4B
Zhang, Chengcai, 0U
Zhang, Guo, 1L, 2H
Zhang, Lei, 33
Zhang, Nannan, 2V
Zhang, Ping, 3V
Zhang, Qingjun, 4K
Zhang, Rongting, 0W
Zhang, Xi, 2G
Zhang, Xia, 3G
Zhang, Xin, 4A
Zhang, Yanmei, 4D
Zhang, Zheng, 21, 38
Zhang, Zhongjun, 1O
Zhao, Huijie, 49
Zhao, Jun, 2O
Zhao, Li-Jun, 3S
Zhao, Lin, 0Y
Zhao, Shaojie, 26
Zhao, Tianjie, 0X
Zhao, Xiaofeng, 0A
Zhao, Yanchuang, 0A
Zhao, Yu, 03
Zheng, Chaolei, 43
Zheng, Hui, 3W, 48
Zheng, Xingming, 1O
Zheng, Xinyu, 30
Zhou, Guoqing, 0W
Zhou, Ke, 4B
Zhou, Kefa, 2V
Zhou, Yan, 4L
Zhou, Zeng-guang, 21, 38
Zhu, Qiankun, 39
Zhu, Xiaoming, 1O
Zhu, Zule, 0U
Zou, Pengfei, 3V
Zou, Youfeng, 2U
Symposium Committees

Symposium Chairs

Upendra Singh, NASA Langley Research Center (United States)
Jiancheng Shi, Institute of Remote Sensing Applications and Digital Earth (China)

Honorary Symposium Chairs

George Komar, NASA Headquarters (United States)
Toru Fukuda, Japan Aerospace Exploration Agency (Japan)
Deren Li, Wuhan University (China)
Shailesh R. Nayak, Ministry of Earth Sciences (India)
Guanhua Xu, Former Minister of Science and Technology Department of China (China)

Symposium Co-chairs

Toshio Iguchi, National Institute of Information and Communications Technology (Japan)
A. S. Kiran Kumar, Space Applications Center (India)

International Organizing and Technical Program Committee

Akimasa Sumi, The University of Tokyo (Japan)
Allen M. Larar, NASA Langley Research Center (United States)
Delu Pan, The Second Institute of Oceanography, SOA (China)
Haruhisa Shimoda, Tokai University (Japan)
Huadong Guo, Institute of Remote Sensing and Digital Earth (China)
Jiancheng Shi, Institute of Remote Sensing and Digital Earth (China)
Jing Ming Chen, Nanjing University (China) and University of Toronto (Canada)
Kazuhiro Asai, Tohoku Institute of Technology (Japan)
Kohei Mizutani, National Institute of Information and Communications Technology (Japan)
Peng Gong, Tsinghua University (China)
Peng Zhang, China Meteorological Administration (China)
Robert J. Frouin, Scripps Institution of Oceanography (United States) and University of California, San Diego (United States)
Shunlin Liang, Beijing Normal University (China) and University of Maryland (United States)
Thomas J. Jackson, U. S. Department of Agriculture (United States)
Tiruvalam N. Krishnamurti, Florida State University (United States)
Toru Fukuda, Japan Aerospace Exploration Agency (Japan)
Toshiyoshi Kimura, Japan Aerospace Exploration Agency (Japan)
Upendra N. Singh, NASA Langley Research Center (United States)
Xiaoxiong Xiong, NASA Goddard Space Flight Center (United States)
Zhanqing Li, Beijing Normal University (China) and University of Maryland, College Park (United States)
Guoqing Zhou, Guilin University of Technology (China)

Local Organizing Committee

Liangfu Chen, Institute of Remote Sensing and Digital Earth (China)
Zifeng Wang, Institute of Remote Sensing and Digital Earth (China)
Mingmei Chen, Institute of Remote Sensing and Digital Earth (China)
Dandan Li, Institute of Remote Sensing and Digital Earth (China)
Tianxing Wang, Institute of Remote Sensing and Digital Earth (China)
Xiliang Ni, Institute of Remote Sensing and Digital Earth (China)
Xiaofeng Yang, Institute of Remote Sensing and Digital Earth (China)
Ying Zhang, Institute of Remote Sensing and Digital Earth (China)
Tiantian Wang, Institute of Remote Sensing and Digital Earth (China)
Xiaoying Ouyang, Institute of Remote Sensing and Digital Earth (China)
Le Yang, Institute of Remote Sensing and Digital Earth (China)
Man Peng, Institute of Remote Sensing and Digital Earth (China)
Conference Committee

Conference Chairs
 Thomas J. Jackson, U.S. Department of Agriculture (United States)
 Jing Ming Chen, University of Toronto (Canada)
 Peng Gong, Tsinghua University (China)
 Shunlin Liang, University of Maryland, College Park (United States)

Conference Co-chairs
 Koji Kajiwara, Chiba University (Japan)
 Jiancheng Shi, State Key Laboratory of Remote Sensing Science (China)

Conference Program Committee
 Zhaoliang Li, Institute of Agricultural Resources and Regional Planning (China)
 Jie Shan, Purdue University (United States)

Session Chairs
 Vegetation and Crops
 Jing Ming Chen, University of Toronto (Canada)
 Urban
 Jie Shan, Purdue University (United States)
 Soil Moisture Active Passive (SMAP) Mission
 Tianjie Zhao, Institute of Remote Sensing and Digital Earth (China)
 Snow
 Andreas Colliander, Jet Propulsion Laboratory (United States)
 Soil Moisture I
 Peggy E. O'Neill, NASA Goddard Space Flight Center (United States)
 Soil Moisture II
 Venkat Lakshmi, University of South Carolina (United States)
 Soils
 Fulong Chen, Institute of Remote Sensing and Digital Earth (China)
Land Surface Change and Subsidence
Tianhe Chi, Institute of Remote Sensing and Digital Earth (China)

Hydrologic Variables and States
Li Jia, Institute of Remote Sensing and Digital Earth (China)

Forests
Shunlin Liang, NOAA / NESDIS Office of Satellite Operations (United States)

Biomass and NPP
Koji Kajiwara, Chiba University (Japan)

Land Cover and Climate Change
Huabing Huang, Institute of Remote Sensing and Digital Earth (China)

Land Remote Sensing Topics
Liangyun Liu, Institute of Remote Sensing and Digital Earth (China)