11 November 2014 Holographic generation of non-diffractive beams
Author Affiliations +
Abstract
An Airy beam is a non-diffractive wave which propagates along a ballistic trajectory without any external force. Although it is impossible to implement ideal Airy beams because they carry infinite power, so-called finite Airy beams can be achieved by tailoring infinite side lobes with an aperture function and they have similar propagating characteristics with those of ideal Airy beams. The finite Airy beam can be optically generated by several ways: the optical Fourier transform system with imposing cubic phase to a broad Gaussian beam, nonlinear generation of Airy beams, curved plasma channel generation, and electron beam generation. In this presentation, a holographic generation of the finite Airy beams will be discussed. The finite Airy beams can be generated in virtue of holographic technique by ‘reading’ a hologram which is recorded by the interference between a finite Airy beam generated by the optical Fourier transform and a reference plane wave. Moreover, this method can exploit the unique features of holography itself such as successful reconstruction with the imperfect incidence of reference beam, reconstruction of phase-conjugated signal beam, and multiplexing, which can shed more light on the characteristics of finite Airy beams. This method has an advantage in that once holograms are recorded in the photopolymer, a bulky optics such as the SLM and lenses are not necessary to generate Airy beams. In addition, multiple Airy beams can be stored and reconstructed simultaneously or individually.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Byoungho Lee, Byoungho Lee, Dawoon Choi, Dawoon Choi, Keehoon Hong, Keehoon Hong, Kyookeun Lee, Kyookeun Lee, Kyoung-Youm Kim, Kyoung-Youm Kim, } "Holographic generation of non-diffractive beams", Proc. SPIE 9271, Holography, Diffractive Optics, and Applications VI, 92710J (11 November 2014); doi: 10.1117/12.2072182; https://doi.org/10.1117/12.2072182
PROCEEDINGS
7 PAGES


SHARE
Back to Top