You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 November 2014Beam manipulation in a bilayered gradient metamaterial
We propose an ultrathin planar metamaterial with an abrupt phase change along its surface for beam manipulation. The metamaterial is composed of bilayered asymmetrical split ring apertures (ASRAs) on either side of a dielectric substrate. The proposed metamaterial relies on eight variable ASRAs in a super cell to modulate the phase of transmitted wave. Efficient beam direction manipulation for cross-polarization transmission has been achieved and co-polarization transmission has been completely suppressed. Numerical simulation results show that the linearly polarized incident wave can deflect in a designated direction passing through the ultrathin metamaterial. An intensity efficiency of 70% and a deflection angle of 24° at 6.2GHz have been verified.
The alert did not successfully save. Please try again later.
Quanchao Shi, Guangyu Nie, Zheng Zhu, Yang Liu, Jinhui Shi, "Beam manipulation in a bilayered gradient metamaterial," Proc. SPIE 9278, Plasmonics, 927818 (13 November 2014); https://doi.org/10.1117/12.2071454