You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 September 2014Research on grinding block wear in grinding of SiC
Silicon carbide is being the main ceramics material to make aspherical optical reflectors because of its good physical and chemical performance. But, because of the particularity of wheel structure, wheel wear form and wear loss is changing with time going, which limits the wheel wear researchment. In order to make a better research to wheel grinding, the author experimented many researches on diamond grinding blocks in grinding of SiC in the surface grinding machine, finding the relationship between diamond grinding block wear form and wear loss and grinding force, surface quality and surface precision of workpiece, including the principle of diamond grinding block wear form and wear loss changing with time going, the influencing law of surface quality and surface accuracy because of wheel wear. By changing some grinding parameters in the grinding experiments, the author gets the order of the influencing factors of grinding parameters to wheel wear by orthogonal test.
The alert did not successfully save. Please try again later.
Feihu Zhang, Guodong Lu, Minhui Liu, Dianrong Luan, "Research on grinding block wear in grinding of SiC," Proc. SPIE 9280, 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 928005 (2 September 2014); https://doi.org/10.1117/12.2068284