Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX

James G. Fujimoto
Joseph A. Izatt
Valery V. Tuchin
Editors

8–11 February 2015
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

vii Authors
ix Conference Committee

OPHTHALMOLOGY I

9312 02 Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s [9312-1]
9312 03 High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT [9312-2]
9312 05 Intraoperative optical coherence tomography using an optimized reflective optical relay, real-time heads-up display, and semitransparent surgical instrumentation [9312-4]

OPHTHALMOLOGY II

9312 0N 3D spectral imaging system for anterior chamber metrology [9312-22]
9312 0T High-resolution polarization sensitive OCT for ocular imaging in rodents [9312-28]

ANGIOGRAPHY AND VASCULAR IMAGING

9312 18 Ultrasensitive quantification of cerebral capillary flow networks and dynamics [9312-43]
9312 1A Optical microangiography reveals collateral blood perfusion dynamics in mouse cerebral cortex after focal stroke [9312-45]
9312 1C In vivo microvascular imaging of human oral and nasal cavities using swept-source optical coherence tomography with a single forward/side viewing probe [9312-47]

FUNCTIONAL OCT I

9312 1G High-speed imaging of remotely induced shear waves using phase-sensitive optical coherence tomography [9312-51]

COMPUTATIONAL AND AO OCT

9312 1R Demonstration of depth-resolved wavefront sensing using a swept-source coherence-gated Shack-Hartmann wavefront sensor [9312-62]
FUNCTIONAL OCT II

| 9312 1Z | Probing myocardium biomechanics using quantitative optical coherence elastography [9312-70] |

OCT APPLICATIONS

| 9312 2A | Detection of small biological objects by phase-sensitive optical coherence tomography [9312-81] |

POSTER SESSION

9312 2I	Progress on developing wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice [9312-89]
9312 2J	A wide angle low coherence interferometry based eye length optometer [9312-90]
9312 2K	Fourier domain optical coherence tomography artifact and speckle reduction by autoregressive spectral estimation without a loss of resolution [9312-91]
9312 2M	Perspectives of the optical coherence tomography community on code and data sharing [9312-93]
9312 2N	Drivers of the OCT market growth in clinical applications [9312-97]
9312 2P	Spectroscopy by joint spectral and time domain optical coherence tomography [9312-99]
9312 2S	Optical coherence elastography (OCE) as a method for identifying benign and malignant prostate biopsies [9312-102]
9312 2X	Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography [9312-108]
9312 2Z	Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma [9312-110]
9312 32	Motion analysis and removal in intensity variation based OCT microangiography [9312-113]
9312 33	Enhanced delineation of degradation in aortic walls through OCT [9312-114]
9312 35	Precise measurement of instantaneous volume of eccrine sweat gland in mental sweating by optical coherence tomography [9312-116]
9312 36	Signal simulation and signal processing for multiple reference optical coherence tomography [9312-96]
9312 37	Low cost, high resolution optical coherence tomography utilizing a narrowband laser diode [9312-118]
Akinetic swept source with adjustable coherence length for SS-OCT

The mid-infrared swept laser: life beyond OCT?

Phase evolution and instantaneous linewidth of a Fourier domain mode locked laser

Tunable semiconductor laser at 1025-1095 nm range for OCT applications with an extended imaging depth

Phase and frequency dynamics of a short cavity swept-source OCT laser

Dual parametric compounding approach for speckle reduction in OCT

Master-Slave optical coherence tomography for parallel processing, calibration free and dispersion tolerance operation

Wavelength to pixel calibration for FdOCT

Enhance resolution on OCT profilometry measurements using harmonic artifacts

One-micron resolution optical coherence tomography (OCT) in vivo for cellular level imaging

Alternative optical design for optical coherence tomography probes

Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging

Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework

Axial resolution improvement in spectral domain optical coherence tomography using a depth-adaptive maximum-a-posterior framework
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Anderson, Trevor, 0N
Baran, Utku, 1A
Barnes, Fred, 3I
Baumann, Bernhard, 0T
Bizheva, Kostadinka, 40, 41
Bonora, Stefano, 2I
Boroomand, Ameneh, 40, 41
Bousi, Evgenia, 2K
Bouyé, Clémentine, 2N
Bradu, Adrian, 3I
Butler, T., 3A, 3C
Calvo Díez, Marta, 33
Chamorovskiy, Alexander, 3B
Childs, D. T. D., 39
Choi, Woo June, 1C
Cockburn, J. W., 39
Conde, Olga M., 33
Cui, Dongyao, 3R
de Freitas, Anderson Zanardi, 3Q
De Pretto, Lucas Ramos, 3Q
d’Humières, Benoît, 2N
Draxinger, Wolfgang, 02
Drexler, Wolfgang, 03
Dsouza, Roshan, 36
Du, Congwu, 18
Ehlers, Justis P., 05
El-Haddad, Mohamed T., 05
Ellerbee, Audrey K., 2M
Fechtig, Daniel J., 03
Feller, Daniel, 05
Filová, Stanislava, 0T
Frisken, Grant, 0N
Frisken, Steven, 0N
Fukuda, Akhiro, 35
Gardas,Mateusz, 2X
Garzia, Livia, 2Z
Genis, Helen, 2Z
Ginner, Laurin, 03
Głowacki, Maciej J., 2X
Goulding, D., 3A, 3C
Gröger, Marion, 0T
Gu, Jun, 3R
Guan, Guangying, 2S
Hartkom, Klaus, 3T
Hato, Jun, 37
Hegarty, S. P., 3A, 3C
Hitzenberger, Christoph K., 0T
Hogan, Josh, 36
Hogg, R. A., 39
Huang, Zhihong, 1G, 2S
Huber, Robert, 02, 3G
Huyet, G., 3A, 3C
Jackson, David A., 3B
Jian, Yifan, 2I
Kapinchev, Konstantin, 3I
Karnowski, Karol, 3B, 3C
Kelleher, B., 3A, 3C
Kiehl, Tim-Rasmus, 2Z
Kirby, Mitchell, 32
Klein, Thomas, 02, 3G
Kolb, Jan Philip, 02, 3G
Kraszewski, Maciej, 2X, 3X
Kumar, Abhishek, 03
Kyan, Matthew, 2Z
Larina, Irina V., 1Z
Larino, Irina V., 1Z
Le, Nhan Minh, 1G
Leahy, Martin, 36
Leitgeb, Rainer A., 03
Li, Chunhui, 2S
Li, Jiasong, 1Z
Li, Yuanlong, 1A
Ling, Yuling, 2S
Liu, Linbo, 3R
Liu, Xinyu, 3R
Liu, Xuan, 32
Lobintsov, Andrei A., 3B
López, Andrew L., III, 1Z
López-Higuera, José M., 33
Luo, Yuemei, 3R
Lurie, Kristen L., 2M
Lyu, Hong-Chou, 3B, 3C
Martin, James F., 1Z
Matcher, S. J., 39
Mayorga, Marta, 33
Meadway, Alexander, 2J
Minemura, Hiroyuki, 37
Mistree, Behram F. T., 2M
Morikawa, Yuka, 1Z
Nabi, Ghulam, 2S
Noonan, Amanda I., 05
O'Shaughnessy, B., 3A, 3C
Ossowski, Paweł, 2A
Ossowski, Paweł, 2A
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chair

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
Joseph A. Izatt, Duke University (United States)
Valery V. Tuchin, N.G. Chernyshevsky Saratov State University (Russian Federation)

Conference Program Committee

Peter E. Andersen, Technical University of Denmark (Denmark)
Kostadinka Bizheva, University of Waterloo (Canada)
Stephen A. Boppart M.D., University of Illinois at Urbana-Champaign (United States)
Zhongping Chen, Beckman Laser Institute and Medical Clinic (United States)
Johannes de Boer, Vrije University Amsterdam (Netherlands)
Wolfgang Drexler, Medizinische Universität Wien (Austria)
Christoph K. Hitzenberger, Medizinische Universität Wien (Austria)
Robert A. Huber, Universität zu Lübeck (Germany)
Rainer A. Leitgeb, Medizinische Universität Wien (Austria)
Xingde Li, Johns Hopkins University (United States)
Yingtian Pan, Stony Brook University (United States)
Adrian Gh. Podoleanu, University of Kent (United Kingdom)
Andrew M. Rollins, Case Western Reserve University (United States)
Natalia M. Shakhova, Institute of Applied Physics (Russian Federation)
Guillermo J. Tearney M.D., Wellman Center for Photomedicine (United States)
Ruikang K. Wang, University of Washington (United States)
Maciej Wojtkowski, Nicolaus Copernicus University (Poland)
Yoshiaki Yasuno, University of Tsukuba (Japan)

Session Chairs

1 Ophthalmology I
 James G. Fujimoto, Massachusetts Institute of Technology
 (United States)

2 Light Sources and Technology
 Robert A. Huber, Universität zu Lübeck (Germany)

3 Endoscopy / Intravascular I
 Xingde Li, Johns Hopkins University (United States)

4 Ophthalmology II
 Adrian Gh. Podoleanu, University of Kent (United Kingdom)

5 Endoscopy / Intravascular II
 Yingtian Pan, Stony Brook University (United States)

6 Ophthalmology III
 Wolfgang Drexler, Medizinische Universität Wien (Austria)

7 Angiography and Vascular Imaging
 Yoshiaki Yasuno, University of Tsukuba (Japan)

8 Functional OCT I
 Kostadinka Bizheva, University of Waterloo (Canada)

9 Computational and AO OCT
 Stephen A. Boppart M.D., University of Illinois at Urbana-Champaign
 (United States)

10 OCT Technology
 Johannes F. de Boer, Vrije Universiteit Amsterdam (Netherlands)

11 Functional OCT II
 Peter E. Andersen, Technical University of Denmark (Denmark)

12 OCT Applications
 Joseph A. Izatt, Duke University (United States)