You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 March 20153D spectral imaging system for anterior chamber metrology
Accurate metrology of the anterior chamber of the eye is useful for a number of diagnostic and clinical applications. In particular, accurate corneal topography and corneal thickness data is desirable for fitting contact lenses, screening for diseases and monitoring corneal changes. Anterior OCT systems can be used to measure anterior chamber surfaces, however accurate curvature measurements for single point scanning systems are known to be very sensitive to patient movement. To overcome this problem we have developed a parallel 3D spectral metrology system that captures simultaneous A-scans on a 2D lateral grid. This approach enables estimates of the elevation and curvature of anterior and posterior corneal surfaces that are robust to sample movement. Furthermore, multiple simultaneous surface measurements greatly improve the ability to register consecutive frames and enable aggregate measurements over a finer lateral grid. A key element of our approach has been to exploit standard low cost optical components including lenslet arrays and a 2D sensor to provide a path towards low cost implementation. We demonstrate first prototypes based on 6 Mpixel sensor using a 250 μm pitch lenslet array with 300 sample beams to achieve an RMS elevation accuracy of 1μm with 95 dB sensitivity and a 7.0 mm range. Initial tests on Porcine eyes, model eyes and calibration spheres demonstrate the validity of the concept. With the next iteration of designs we expect to be able to achieve over 1000 simultaneous A-scans in excess of 75 frames per second.
The alert did not successfully save. Please try again later.
Trevor Anderson, Armin Segref, Grant Frisken, Steven Frisken, "3D spectral imaging system for anterior chamber metrology," Proc. SPIE 9312, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX, 93120N (2 March 2015); https://doi.org/10.1117/12.2079229