You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 March 2015Temperature dependence of melanosome microcavitation thresholds produced by single nanosecond laser pulses
Thresholds for microcavitation of isolated bovine retinal melanosomes were determined as a function of temperature using single nanosecond laser pulses at 532 nm and 1064 nm. Melanosomes were irradiated using a 1064-nm Qswitched Nd:YAG (doubled for 532-nm irradiation). Time-resolved microscopy was accomplished by varying the delay between the irradiation beam and an illumination beam allowing stroboscopic imaging of microcavitation events. Results indicated a decrease in microcavitation fluence threshold with increasing sample temperature for both 532-nm and 1064-nm single pulse exposures. The nucleation temperature at both wavelengths was extrapolated through the linear relationship between the temperature increases and the decrease in fluence threshold. In addition, absorption coefficients of melanosomes for visible and near-infrared wavelengths were estimated using the calculated nucleation temperatures.
The alert did not successfully save. Please try again later.
Morgan S. Schmidt, Paul K. Kennedy, Gary D. Noojin, Robert J. Thomas, Benjamin A. Rockwell, "Temperature dependence of melanosome microcavitation thresholds produced by single nanosecond laser pulses," Proc. SPIE 9321, Optical Interactions with Tissue and Cells XXVI, 932108 (5 March 2015); https://doi.org/10.1117/12.2079934