You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 March 2015Resolving power in direct oblique plane imaging
Direct oblique plane imaging is a high-speed microscopy technique that observes a sample’s plane that is inclined to the focal plane of the microscope objective lens. This wide-field microscopy is suitable for a study of fast dynamics of living samples where the principle plane of interest is tilted to the focal plane. A way to implement this imaging technique is to use remote focusing together with a tilted mirror, which involves asymmetrical pupil function of the imaging system. We rigorously study the anisotropic resolving power of the oblique plane imaging using a vectorial diffraction theory. From the derived effective pupil function, we calculate vectorial point spread function (PSF) and optical transfer function (OTF). We show that the two-dimensional (2D) PSF of the direct oblique plane imaging is not merely an oblique crosssection of the 3D PSF of circular aperture system. Similarly, 2D OTF of the oblique plane imaging is different from 2D oblique projection of conventional 3D OTF in circular aperture system.
The alert did not successfully save. Please try again later.
Jeongmin Kim, Tongcang Li, Yuan Wang, Xiang Zhang, "Resolving power in direct oblique plane imaging," Proc. SPIE 9330, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXII, 93300E (9 March 2015); https://doi.org/10.1117/12.2078008