You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 March 2015The role of highly non-linear index change mechanism during femtosecond grating writing in microstructured optical fibers
New methods for fiber Bragg grating inscription in optical fibers use femtosecond laser sources, which can induce refractive index changes even in non-photosensitive fibers and which allow achieving gratings that remain stable at high temperatures. The index change takes place as a result of a highly non-linear multi-photon absorption process. Although such gratings were successfully inscribed in conventional fibers, there are still challenges involved when attempting to fabricate femtosecond gratings in microstructured optical fibers (MOFs). The air holes are usually impeding the delivery of optical power to the core region, which results in a lower grating writing efficiency. In this paper we report on our numerical computations that aim to estimate the influence of the MOF’s holey cladding on the induced index change during interferometric grating inscription with an infrared (IR) femtosecond laser source. For high power femtosecond laser pulses at 800 nm the refractive index change in silica stems from a highly non-linear five photon absorption process. Using empirical data on refractive index changes from literature and intensity distribution data from our transverse coupling simulations we propose an approach to reconstruct the non-linear refractive index modification in the MOF core region. We then study the influence of the MOF angular orientation on the induced index change and we model the impact of MOF tapering as a possible way to increase the grating writing efficiency.
The alert did not successfully save. Please try again later.
Tigran Baghdasaryan, Thomas Geernaert, Hugo Thienpont, Francis Berghmans, "The role of highly non-linear index change mechanism during femtosecond grating writing in microstructured optical fibers," Proc. SPIE 9359, Optical Components and Materials XII, 93590J (16 March 2015); https://doi.org/10.1117/12.2081953