You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 February 2015High-performance GaSb laser diodes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications
Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of
numerous enabling applications in the field of gas sensing, medical, and defense applications. Gas sensing in this spectral
region is attractive due to the presence of numerous absorption lines for such gases as methane, ethane, ozone, carbon
dioxide, carbon monoxide, etc. Sensing of the mentioned gas species is of particular importance for applications such as
atmospheric LIDAR, petrochemical industry, greenhouse gas monitoring, etc. Defense applications benefit from the
presence of covert atmospheric transmission window in the 2.1-2.3 micron band which is more eye-safe and offers less
Rayleigh scattering than the conventional atmospheric windows in the near-infrared. Major requirement to enable these
application is the availability of high-performance, continuous-wave laser sources in this window. Type-I GaSb-based
laser diodes are ideal candidates for these applications as they offer direct emission possibility, high-gain and continuous
wave operation. Moreover, due to the nature of type-I transition, these devices have a characteristic low operation
voltage, which results in very low input powers and high wall-plug efficiency.
In this work, we present recent results of 2 μm – 3.0 μm wavelength room-temperature CW light sources based
on type-I GaSb developed at Brolis Semiconductors. We discuss performance of defense oriented high-power multimode
laser diodes with < 1 W CW power output with over 30 % WPE as well as ~ 100 mW single TE00 Fabry-Perot chips. In
addition, recent development efforts on sensing oriented broad gain superluminescent gain chips will be presented.
The alert did not successfully save. Please try again later.
Edgaras Dvinelis, Augustinas Trinkūnas, Mindaugas Greibus, Mindaugas Kaušylas, Tomas Žukauskas, Ieva Šimonytė, Ramūnas Songaila, Augustinas Vizbaras, Kristijonas Vizbaras, "High-performance GaSb laser diodes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications," Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 93702E (8 February 2015); https://doi.org/10.1117/12.2076115