You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 March 2015Electrical diagnositics of quantum cascade lasers
The analysis of I-V and I-L curves in mid-IR quantum cascade lasers operating at room temperature is performed. When the ohmic component of the device resistance in the I-V curve is subtracted, the current I can be approximated by the exponential function, I = Is exp(eVj/ε) where Is is the saturation current, Vj is the n-n junction voltage, and ε is an energy parameter related to the tunneling mechanism which enables filling of upper states and emptying of lower states of the laser transition. Values of εare found to be in 0.68-1.45 eV range, and when divided by the number of stages in the cascade, the tunneling parameter of each stage is determined. The threshold related “kink” of differential I-V curves is shown. The effect of voltage saturation above the laser threshold is observed. Thus, the possibility of determination of the threshold using electrical measurements in quantum cascade lasers has been demonstrated.
The alert did not successfully save. Please try again later.
Peter G. Eliseev, Chi Yang, Tim C. Newell, Ron Kaspi, "Electrical diagnositics of quantum cascade lasers," Proc. SPIE 9382, Novel In-Plane Semiconductor Lasers XIV, 93821R (10 March 2015); https://doi.org/10.1117/12.2076663