You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 March 2015Locating seed points for automatic multi-organ segmentation using non-rigid registration and organ annotations
Organ segmentation is helpful for decision-support in diagnostic medicine. Region-growing segmentation algorithms are popular but usually require that clinicians place seed points in structures manually. A method to automatically calculate the seed points for segmenting organs in three-dimensional (3D), non-annotated Computed Tomography (CT) and Magnetic Resonance (MR) volumes from the VISCERAL dataset is presented in this paper. It precludes the need for manual placement of seeds, thereby saving time. It also has the advantage of being a simple yet effective means of finding reliable seed points for segmentation. Affine registration followed by B-spline registration are used to align expert annotations of each organ of interest in order to build a probability map for their respective location in a chosen reference frame. The centroid of each is determined. The same registration framework as above is used to warp the calculated centroids onto the volumes to be segmented. Existing segmentation algorithms may then be applied with the mapped centroids as seed points and the warped probability maps as an aid to the stopping criteria for segmentation. The above method was tested on contrast{enhanced, thorax-abdomen CT images to see if calculated centroids lay within target organs, which would equate to successful segmentation if an effective segmentation algorithm were used. Promising results were obtained and are presented in this paper. The causes for observed failures were identified and countermeasures were proposed in order to achieve even better results in the next stage of development that will involve a wider variety of MR and CT images.
The alert did not successfully save. Please try again later.
Ranveer R. Joyseeree, Henning Müller, "Locating seed points for automatic multi-organ segmentation using non-rigid registration and organ annotations," Proc. SPIE 9413, Medical Imaging 2015: Image Processing, 94133S (20 March 2015); https://doi.org/10.1117/12.2081204