20 March 2015 Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images
Author Affiliations +
Detection of larynx cancer from medical imaging is important for the quantification and for the definition of target volumes in radiotherapy treatment planning (RTP). Magnetic resonance imaging (MRI) is being increasingly used in RTP due to its high resolution and excellent soft tissue contrast. Manually detecting larynx cancer from sequential MRI is time consuming and subjective. The large diversity of cancer in terms of geometry, non-distinct boundaries combined with the presence of normal anatomical regions close to the cancer regions necessitates the development of automatic and robust algorithms for this task. A new automatic algorithm for the detection of larynx cancer from 2D gadoliniumenhanced T1-weighted (T1+Gd) MRI to assist clinicians in RTP is presented. The algorithm employs edge detection using spatial neighborhood information of pixels and incorporates this information in a fuzzy c-means clustering process to robustly separate different tissues types. Furthermore, it utilizes the information of the expected cancerous location for cancer regions labeling. Comparison of this automatic detection system with manual clinical detection on real T1+Gd axial MRI slices of 2 patients (24 MRI slices) with visible larynx cancer yields an average dice similarity coefficient of 0.78±0.04 and average root mean square error of 1.82±0.28 mm. Preliminary results show that this fully automatic system can assist clinicians in RTP by obtaining quantifiable and non-subjective repeatable detection results in a particular time-efficient and unbiased fashion.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Trushali Doshi, Trushali Doshi, John Soraghan, John Soraghan, Derek Grose, Derek Grose, Kenneth MacKenzie, Kenneth MacKenzie, Lykourgos Petropoulakis, Lykourgos Petropoulakis, "Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images", Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis, 94142N (20 March 2015); doi: 10.1117/12.2081864; https://doi.org/10.1117/12.2081864

Back to Top