PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942101 (2014) https://doi.org/10.1117/12.2175584
This PDF file contains the front matter associated with SPIE Proceedings Volume 9421, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
S. Ašmontas, J. Gradauskas, A. Sužiedėlis, A. Šilėnas, V. Vaičikauskas, O. Žalys, G. Steikūnas, A. Steikūnienė
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942102 (2014) https://doi.org/10.1117/12.2077437
Results of experimental investigation of photoelectric properties of GaAs p-n-junction illuminated by short laser pulses of 1.06 μm wavelength are presented. The influence of laser radiation intensity and external bias voltage on the formation of photoresponse voltage has been studied. Free carrier heating was recognized to influence significantly the magnitude of the measured photovoltage. Possibility to improve the conversion efficiency of solar cells is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942103 (2014) https://doi.org/10.1117/12.2083575
We report on possibility to detect pulsed microwave radiation across the metal/oxide/porous silicon structures and analyse possible physical reasons causing the rise of the emf voltage signal. The n-type porous layers were fabricated according to conventional electrochemical etching procedure, and were exposed to pulsed 10 GHz microwave radiation. The results of investigation show that the porous Si samples have higher by at least one order voltage-to-power sensitivity than the samples without the porous layer, and are considered to have high potential to increase it further. Free carrier heating phenomenon is considered to be responsible for the signal formation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
K. Bormanis, A. I. Burkhanov, Luu Thi Nhan, M. Antonova, S. V. Mednikov
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942104 (2014) https://doi.org/10.1117/12.2083908
A study of the photo-dielectric effect in ferroelectric SBN-75 ceramics of a broad phase transition under light of small intensity is reported. Relations determining kinetics of the infra-low frequency dielectric response under light and after illumination are obtained from experimental measurements revealing the features of the behaviour of relaxation time constants of the dielectric polarisation with temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942105 (2014) https://doi.org/10.1117/12.2083938
Small D-π-A type organic molecules with incorporated 4H-pyan-4-ylidene (pyranylidene) fragment in their structures show potential in organic photonics - such as materials for organic light emitting diode application studies and organic solid state lasers. Additional incorporation of bulky triphenyl- groups in their structures gives them the ability to form thin amorphous solid films from volatile non-polar organic solvents. Unfortunately, there is still no clear relation between compound organic structures and their thermal and optical properties. In order to investigate the above mentioned regularities we have synthesized a series of tripheyl- group containing derivates of 2,6-bis-styryl-4H-pyran-4- ylidene with different stryryl- substituents and investigated their physical properties. The thermal decomposition temperatures of the obtained glassy 4H-pyran-4-ylidene compounds are in range from 198o to 312oC and depend from electron acceptor and styryl-groups while their glass transition temperatures are in range from 104o to 132oC and are mostly influenced by the electron acceptor fragment. The light absorption of synthesized 4Hpyran- 4-ylidene compounds in solutions of dichloromethane as well as in their solid state are in range from 400 nm to 550 nm. Their photoluminescence spectra in the solid state (from 600 nm to 800 nm) are red-shifted by approximately 50 nm comparing to their photoluminescence spectra in solutions of dichloromethane (from 550 nm to 750 nm) and mostly depends on the N,N-ditrityloxyethyl-aminostyryl-electron donor substituent, 4H-pyran-4-ylidene π-system and on the electron-acceptor group. Synthesized compounds could be used as potential materials for light amplification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942106 (2014) https://doi.org/10.1117/12.2081468
Nanosized materials have shown a relevant potential for practical application in a broad number of research fields, in industrial production and in everyday life. However, these substances acquire new properties and therefore may be biologically very active. This raise questions their potential toxic effects on living organisms. In some cases the nanosized materials or nano-composites possess distinct positive properties in enhancing the adaptation of plants in unfavorable conditions and in decreasing the negative effect of some chemical substances. The information about the positive and negative effects of nano-materials as well as the data concerned to the innovative approaches used by authors for the rapid assessment of the total toxicity with the exploitation of bacteria, Daphnia and plants are given. In last case a special attention is paid to the control of natural bioluminescence and chemoluminescence of living medium of organisms, the energy of the seed germination and the efficiency of the photosynthetic apparatus in growing plants by the estimation of chlorophyll fluorescence by the special “Floratest” biosensor. Three specific clases of nano-materials are analysed: a) nano-particles ZnO, Ag2O, FeOx, TiO2 and others, b) colloidal suspension of the same compounds, and c) nanostructured layered clay materials (acid saponites and Nb-containing saponite clays). The next features are analyzed: the biocidal activity (for nanoparticles), the improvement of the nutrition of plants on calcareous soils (for colloidal structures), the activity and performances as heterogeneous catalysts (for Nb-containing saponites, as selective oxidation catalysts for toxic organosulfur compounds into non-noxious products). The chemical and physical characterization of the nanosized materials described here was studied by different spectrophotometric and microscopic techniques, including AFM and SEM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942107 (2014) https://doi.org/10.1117/12.2084938
In this paper, an overview of selected applications of semiconductor (TiO2 and ZnO) and upconversion nanoparticles is presented. Depending on the size, the former are used as scattering and absorbing compounds in sunscreens and tissuemimicking phantoms; and in combination with gypsum – also as an antibacterial coating for indoor premises, while the latter, especially in combination with optical clearing – as a promising component for deep-biotissue imaging both in vitro and in vivo.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942108 (2014) https://doi.org/10.1117/12.2084046
Scalar and vectorial degenerate four-wave-mixing (DFWM) in azobenzene molecular K-RJ-4-3 [N,N-bis(5,5,5- tryphenylpentyl)-4-((4-tritylphenyl)diazenyl)aniline] and in chalcogenide a-As2S3 glassy films is experimentally investigated. A coherent self-enhancement (CSE) of holographic gratings (HG) in this geometry was experimentally confirmed, for the first time to our knowledge, thus establishing a new method of HG recording, the DFWM CSE recording. Scalar linear s-s, p-p and circular R-R(right) polarizations and orthogonal linear s-p and circular L(left)-R polarizations were used for HG recording with 2 μm period at 532 nm. In the case of K-RJ-4-3 film L-R polarizations were the most efficient enabling the maximum DFWM efficiency ρmax=14.5% whereas in the case of a-As2S3 film s-s polarizations were the best with ρmax=6.0%. DFWM CSE recording has exhibited a different polarization dependence compared to normal DWFM recording. CSE factor ρ/ρ0 (ρ0 being the initial ρ) was the highest for K-RJ-4-3 film (6.8) with s-s polarizations compared to 3 for a-As2S3 film with p-p polarizations. Two-wave HG recording was also studied for comparison.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 942109 (2014) https://doi.org/10.1117/12.2081451
The present article is focused on the optical properties of amorphous As-S-Se thin films and chemical wet-etching in organic non-aqua amine-based solution. Different etching rates depending upon the sample exposure dose and etchant concentration were found. The maximum selective etching ratio 7:1 for samples was achieved. An interference method of in situ real-time monitoring of etching rate for the area with different exposure doses for the same sample was proposed. The efficiency of formation of relief gratings for amorphous As-S-Se thin films depending on the exposure dose was studied. Quality holographic gratings with diffraction efficiency (DE) of up to 65% were received. The results of the current study demonstrate an adequate etching selectivity for fabricating micro structures and possibility of practical application of amorphous chalcogenide thin films in holography and optical lithography.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210A (2014) https://doi.org/10.1117/12.2083960
The application prospect of zinc oxide (ZnO) nanostructures largely relies on the ability to grow nanoobjects with necessary geometry. In this study well-aligned ZnO nanorod arrays with a high density and uniformity were successfully synthesized on the glass substrates by a hydrothermal method at low-temperature. The aqueous solutions of zinc nitrate hexahydrate and hexamethylenetetramine was used. The effect of seed layer (obtained by electrochemical method and by vacuum deposition method) on the alignment of ZnO nanorods has been investigated. The morphological properties of the ZnO nanorods were also examined in accordance with varying the magnetron sputtering angle for ZnO seeds deposition. It is also shown that the electric field can control the direction of the growth of ZnO nanorods. Morphological, structural and compositional characterizations of obtained films were carried out by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analysis methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210B (2014) https://doi.org/10.1117/12.2083927
The electrochemical etching of porous silicon offers many diverse opportunities for production of complex porous silicon structures located not only on the surface but also in a bulk of the silicon devices. A specific technological regime, the photo-electrochemical etching can affect bulk of the silicon device but at the same time saving its textured surface almost unchanged. Our group is the first who investigated the silicon solar cells with textured surface modified by means of photo-electrochemical etching. Etched devices demonstrated better photoelectrical characteristics if compare ones with unmodified solar cells. Our current work presents results on research of solar cells photoelectrochemically treated in HF: ethanol solution. Applied etching regime allowed us to modify the emitter’s volume at the same time affecting only minimally the surface of the solar cell itself. SEM micrographs show the elevations, ripples, bumps, cracks etc. on the surface of photo-electrochemically treated solar cells. The optical ellipsometer spectra, optical microscope measurements results, SEM micrographs of surface morphology as well as light reflectivity of the photoelectrochemically treated and untreated surfaces of the solar cells investigated and discussed in this work.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
N. Samuolienė, J. Gradauskas, A. Sužiedėlis, A. Maneikis, M. Treideris
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210C (2014) https://doi.org/10.1117/12.2083576
We propose a new fast technique to determine thermal conductivity of a nanostructured material and demonstrate it for porous silicon. Transient thermoelectric voltage is measured after a pulsed laser irradiation, and analysis of the voltage decay time constant and porosity of the structure gives the value of the thermal conductivity. For n-type Si of 70% porosity we obtain the value of 35 W m-1 K-1 what is in good agreement with the results of other investigations The method can be easily applied for any other porous or otherwise structured low-dimensional materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210D (2014) https://doi.org/10.1117/12.2084915
Optical methods are widely used in biophotonic applications. They can be used for imaging cellular structures and living tissues. They also provide a tool to analyse cell cultures and cell suspensions. For example fluorescence, optical absorption or optical scattering can account for the contrast mechanism. Luminescence has also found various application areas. Luminescence from modified gene reporters can be measured to quantify biological phenomena and dynamic processes. In this paper the principles of phase sensitive detection and photon counting instrumentation systems to detect low-intensity light are shortly reviewed. They are typically using a photomultiplier tube as a detecting element. We discuss the experimental approach and the potential application areas in the context of elastic light scattering measurements of single particles and cells as well as in characterization of tissue-mimicking phantoms. Moreover, we describe a photon counting measurement system for measuring luminescence and show some results of monitoring luminescence in supernatant samples from cell cultures. The same instrument is capable to measure elastic light scattering from single cells and tissue-mimicking phantoms by using a phase sensitive detection with small modifications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210E (2014) https://doi.org/10.1117/12.2083915
In this paper we show our first results of research for creation a detector for benzene vapor and possibly other volatile organic compounds detection in air based on Zeeman atomic absorption technique. First the detailed study of benzene absorption spectra with high resolution spectrometer Jobin-Yvon 1000M was done. The absorption spectra of benzene were registered in the spectral range from 200-900 nm. More detailed analysis was done for the 240 – 260 nm spectral range to test a possibility to detect benzene by means of emission line of 254 nm of mercury.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210F (2014) https://doi.org/10.1117/12.2081163
It is presented the experimental results about the investigations of the efficiency of the structured nano-pourous silicon (sNPS) application as transducer in the immune biosensors designed for the control of retroviral bovine leucosis (RBL) and the determination of the level such mycotoxins as T2 and patulin among environmental objects. Today, there is an arsenal of the traditional immunological methods that allow for the biochemical diagnostics of the above diseases and control of toxins but they are deeply routine and can not provide the requirements of practice for express analysis, its low cost and simplicity. Early to provide practical demands we developed immune biosensors based on SPR, TIRE and thermistors. To find more simple variant of the assay we studied the efficiency sNPS as trasducer in immune biosensor. The registration of the specific signals was made by measuremets of level of chemiluminescence (ChL) or photocurrent. The sensitivity of biosensor for both variants of the specific signal registration at the determination of T2 and patulin was about 10-20 ng/ml. Sensitivity analysis of RBL by this immune biosensors exceeds traditionally used approaches including the ELISA-method too. The optimal serum dilution of blood at the screening leukemia should be no less than 1:100, or even 1:500. The immune biosensor may be applied too for express screening leucosis through analysis of milk. In this case the optimal serum dilution of milk should be about 1:20. The total time of analysis including all steps (immobilization of specific Ab or antigens on the transducer surface and measurements) was about 40 min and it may be a sharp decline if the above mentione sensitive elements will be immobilized preliminary measurements. It is concluded that the proposed type of transducer for immune biosensor is effective for analysis of mycotoxins in screening regime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210G (2014) https://doi.org/10.1117/12.2083948
In this work we estimate gas temperature from OH rotational spectrum at 306.4 nm and C2 Swan band at 516.5 nm in thallium containing lamps during two working regimes: stable generation and self-modulation regime. The usage of both molecules allowed us to estimate gas temperature in different zones of the discharge. The measurement results show that the central part of discharge has temperature higher for about 400 K than in vicinity of lamp inner walls. The measurement results of self-modulation regime showed that rotational temperature variations are similar to that of atomic and molecular spectral line intensities with period being around 1 minute. More detailed analysis of temporal behavior of spectral lines gives us information about collisional processes in the plasma.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210H (2014) https://doi.org/10.1117/12.2083842
This paper is devoted obtaining the threshold of the credibility of the solution by means of Tikhonov's regularization method in case of spectral lines, emitted from microsize plasma sources. The reliability of Tikhonov algorithm was verified by means of solving model tasks with different ratio between instrumental function and measured profile and, with different levels of noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
E. Borisova, Al. Jeliazkova, E. Pavlova, P. Troyanova, T. Kundurdjiev, P. Pavlova, L. Avramov
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210I (2014) https://doi.org/10.1117/12.2082632
For the DRS measurements of skin benign, dysplastic and malignant lesions in vivo we applied halogen lamp (LS-1, OceanOptics Inc, Dunedin, Fl, USA) as a continuous light source in the region of 400-900 nm, optical probe (6+1 fibers) for the delivery of illumination and diffuse reflected light from the skin investigated and microspectrometer USB4000 (OceanOptics Inc., Dunedin, Fl, USA) for a storage and display of the spectra detected. As a diffuse reflectance standard Spectralon® plate was used to calibrate the spectrometer. The reflectance spectra obtained from normal skin in identical anatomic sites of different patients have similar spectral shape features, slightly differ by the reflectance intensity at different wavelengths, depending on the particular patient’ skin phototype. One could find diagnostically important spectral features, related to specific intensity changes for a given wavelength due to specific pigments appearance, slope changes by value and sign for the reflectance spectra curves in a specific spectral range, disappearance or manifestation of minima, related to hemoglobin absorption at 410-420 nm, 543, 575 nm. Based on the observed peculiarities multispectral analysis of the reflectance spectra of the different lesions was used and diagnostically specific features are found. Discrimination using the DRS data obtained between benign compound and dermal nevi (45 cases), dysplastic nevi (17 cases) and pigmented malignant melanoma (41 cases) lesions is achieved with a diagnostic accuracy of 96 % for the benign nevi vs. MM, and 90 % for the dysplastic nevi vs. MM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210J (2014) https://doi.org/10.1117/12.2084681
Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210K (2014) https://doi.org/10.1117/12.2083679
Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A. Kuznetsov, A. Frorip, A. Maiste, M. Ots-Rosenberg, A. Sünter, J. Sablonin, J. Vasil'chenko
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210L (2014) https://doi.org/10.1117/12.2083585
Hemodialysate (HD) samples collected from the end stage renal disease patients (ESRD Pts) were used for search for possible correlation between the intensity of HD visible auto-fluorescence (VF) detected at 420 nm as well as their optical absorption at 320 nm and the mortality events among the Pts. Previous but strongly promising correlations has been found in both cases which deserve further supplementation and examination. Investigation of possible influence of quenchers onto the VF intensity has been carried out. Endogenous inorganic ions present in biological fluids (serum, urine and HD) (Na, K, Ca, Mg and ammonia) do not affect the VF intensity remarkably but exogenous Al ions do that indirectly and specifically. Carbon based entities (nanoparticles of graphene type, humins) quench the VF effectively according to the Stern-Volmer law. The quenching phenomena and influence of aluminium must be taken into account by the further investigations, medical care and nutrition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
M. Tamošiūnas, D. Jakovels, A. Ļihačovs, A. Kilikevičius, J. Baltušnikas, R. Kadikis, S. Šatkauskas
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210M (2014) https://doi.org/10.1117/12.2083895
Electroporation and ultrasound induced sonoporation has been showed to induce plasmid DNA transfection to the mice tibialis cranialis muscle. It offers new prospects for gene therapy and cancer treatment. However, numerous experimental data are still needed to deliver the plausible explanation of the mechanisms governing DNA electro- or sono-transfection, as well as to provide the updates on transfection protocols for transfection efficiency increase. In this study we aimed to apply non-invasive optical diagnostic methods for the real time evaluation of GFP transfection levels at the reduced costs for experimental apparatus and animal consumption. Our experimental set-up allowed monitoring of GFP levels in live mice tibialis cranialis muscle and provided the parameters for DNA transfection efficiency determination.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210N (2014) https://doi.org/10.1117/12.2083950
Automatic dynamic infrared retinoscope was developed, which allows to run procedure at a much higher rate. Our system uses a USB image sensor with up to 180 Hz refresh rate equipped with a long focus objective and 850 nm infrared light emitting diode as light source. Two servo motors driven by microprocessor control the rotation of semitransparent mirror and motion of retinoscope chassis. Image of eye pupil reflex is captured via software and analyzed along the horizontal plane. Algorithm for automatic accommodative state analysis is developed based on the intensity changes of the fundus reflex.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
M. Tamošiūnas, I. Bertulytė, I. Rečiūnaitė, B. Jakštys, I. Šatkauskienė, K. Čepurnienė
Proceedings Volume Eighth International Conference on Advanced Optical Materials and Devices (AOMD-8), 94210O (2014) https://doi.org/10.1117/12.2082963
The aim of this study was to estimate the changes of autofluorescence and sensitized fluorescence under the effect of cosmetics. We used a method of fluorescence spectroscopy in vivo and examined the mouse skin covering the tumour. Analysis of fluorescence spectral changes was made after differentiation of the cosmetics according to its effects: i) inducing temporary changes of skin autofluorescence after absorbtion into skin (lipsticks, face powders, body lotions, mascaras); ii) permanently changing the fluorescence of the skin (collagen containing products). Cosmetics have been shown to be optically active and capable to alter the fluorescence of exogenously accumulated photosensitizers and endogenous tissue fluorophores.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.