Alternative Lithographic Technologies VII

Douglas J. Resnick
Christopher Bencher
Editors

23–26 February 2015
San Jose, California, United States

Sponsored by
SPIE

Cosponsored by
DNS Electronics, LLC

Published by
SPIE

Volume 9423
Contents

ix Authors
xiii Conference Committee
xvii Introduction

SESSION 1 KEYNOTE SESSION

9423 04 Graphoepitaxial and chemoepitaxial methods for creating line-space patterns at 33nm pitch: comparison to a HVM process (Keynote Paper) [9423-3]

SESSION 2 DSA PROCESS AND INTEGRATION

9423 05 Implementation of templated DSA for via layer patterning at the 7nm node (Invited Paper) [9423-4]
9423 06 Directed self-assembly (DSA) grapho-epitaxy template generation with immersion lithography [9423-5]
9423 07 Customization and design of directed self-assembly using hybrid prepatterns [9423-6]
9423 09 Understanding of PS-b-PMMA phase segregation under laser-induced millisecond thermal annealing [9423-8]

SESSION 3 UV-NIL FOR IC MANUFACTURING

9423 0C Nanoimprint system development and status for high volume semiconductor manufacturing [9423-11]
9423 0D HVM readiness of nanoimprint lithography templates: defects, CD, and overlay [9423-12]

SESSION 4 SCANNING PROBE LITHOGRAPHY

9423 0E Advanced electric-field scanning probe lithography on molecular resist using active cantilever (Invited Paper) [9423-13]
9423 0F Optimization of near-field scanning optical lithography [9423-14]
SESSION 5 NOVEL LITHOGRAPHY AND APPLICATIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 0I</td>
<td>Pattern transfer into silicon using sub-10 nm masks made by electron beam induced deposition [9423-17]</td>
</tr>
<tr>
<td>9423 0K</td>
<td>Fabrication of functional electromechanical nanowire resonators by focused ion-beam (FIB) implantation [9423-19]</td>
</tr>
</tbody>
</table>

SESSION 6 METROLOGY AND INSPECTION FOR DIRECTED SELF-ASSEMBLY: JOINT SESSION WITH CONFERENCES 9423 AND 9424

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 0M</td>
<td>Defect mitigation and root cause studies in IMEC's 14nm half-pitch chemo-epitaxy DSA flow [9423-21]</td>
</tr>
</tbody>
</table>

SESSION 7 DSA MATERIALS AND PROCESSES I: JOINT SESSION WITH CONFERENCES 9425 AND 9423

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 0N</td>
<td>Impact of materials selection on graphoepitaxial directed self-assembly for line-space patterning [9423-22]</td>
</tr>
<tr>
<td>9423 0O</td>
<td>Imprint directed self-assembly of cylinder-forming Si-containing block copolymer for 6 nm half-pitch line patterning [9423-23]</td>
</tr>
</tbody>
</table>

SESSION 8 DSA MATERIALS AND PROCESSES II: JOINT SESSION WITH CONFERENCES 9425 AND 9423

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 0R</td>
<td>Toward high-performance quality meeting IC device manufacturing requirements with AZ SMART DSA process [9423-26]</td>
</tr>
<tr>
<td>9423 0S</td>
<td>Fin formation using graphoepitaxy DSA for FinFET device fabrication [9423-27]</td>
</tr>
</tbody>
</table>

SESSION 9 NANOIMPRINT LITHOGRAPHY: NON-IC APPLICATIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 0T</td>
<td>Smart plastic functionalization by nanoimprint and injection molding (Invited Paper) [9423-28]</td>
</tr>
<tr>
<td>9423 0U</td>
<td>Development of NIL processes for PV applications [9423-29]</td>
</tr>
<tr>
<td>9423 0W</td>
<td>Shape change of cured 2D and 3D nanostructures from imprint lithography [9423-88]</td>
</tr>
</tbody>
</table>

SESSION 10 MULTIBEAM LITHOGRAPHY

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 10</td>
<td>Thermal effect induced wafer deformation in high-energy e-beam lithography [9423-35]</td>
</tr>
<tr>
<td>9423 11</td>
<td>Comparison between e-beam direct write and immersion lithography for 20nm node [9423-36]</td>
</tr>
</tbody>
</table>
Alternative stitching method for massively parallel e-beam lithography [9423-37]

Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions [9423-38]

SESSION 11 DSA LINE AND VIA PATTERNING

Self-aligned line-space pattern customization with directed self-assembly graphoepitaxy at 24nm pitch (Invited Paper) [9423-39]

Impact of BCP asymmetry on DSA patterning performance [9423-40]

Directed self-assembly lithography using coordinated line epitaxy (COOL) process [9423-41]

Template affinity role in CH shrink by DSA planarization [9423-42]

Cross-sectional imaging of directed self-assembly block copolymers [9423-43]

SESSION 12 ELECTRON-BEAM APPLICATIONS

Massively parallel e-beam inspection: enabling next-generation patterned defect inspection for wafer and mask manufacturing (Invited Paper) [9423-44]

Fabrication of NIL templates and diffractive optical elements using the new Vistec SB4050 VSB e-beam writer [9423-45]

Verification of e-beam direct write integration into 28nm BEOL SRAM technology [9423-46]

Ready for multi-beam exposure at 5kV on MAPPER tool: lithographic and process integration performances of advanced resists/stack [9423-47]

Contour-based kernel modeling and verification for e-beam lithography [9423-48]

SESSION 13 DSA DESIGN FOR MANUFACTURABILITY: JOINT SESSION WITH CONFERENCES 9423, 9426, AND 9427

Verification of directed self-assembly (DSA) guide patterns through machine learning [9423-49]

Experimental study of sub-DSA resolution assist features (SDRAF) [9423-50]

DSA-aware assist features [9423-51]
SESSION 14 DSA MODELING

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 1I</td>
<td>Advantages and limitations of density functional theory in block copolymer directed self-assembly [9423-53]</td>
</tr>
<tr>
<td>9423 1J</td>
<td>Effect of chemoepitaxial guiding underlayer design on the pattern quality and shape of aligned lamellae for fabrication of line-space patterns [9423-54]</td>
</tr>
<tr>
<td>9423 1K</td>
<td>The effects of geometry and chemistry of nanopatterned substrates on the directed self-assembly of block-copolymer melts [9423-55]</td>
</tr>
<tr>
<td>9423 1L</td>
<td>Effect of χ_N and underlayer composition on self-assembly of thin films of block copolymers with energy asymmetric block [9423-56]</td>
</tr>
</tbody>
</table>

POSTER SESSION: NANOIMPRINT LITHOGRAPHY

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 1M</td>
<td>Negative e-beam resists using for nano-imprint lithography and silicone mold fabrication [9423-57]</td>
</tr>
<tr>
<td>9423 1N</td>
<td>Advanced nano lithography via soft materials-derived and reversible nano-patterning methodology for molding of infrared nano lenses [9423-58]</td>
</tr>
</tbody>
</table>

POSTER SESSION: ELECTRON-BEAM LITHOGRAPHY AND APPLICATIONS

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 1P</td>
<td>An instruction-based high-throughput lossless decompression algorithm for e-beam direct-write system [9423-60]</td>
</tr>
<tr>
<td>9423 1Q</td>
<td>"Fast" and "thick" e-beam resists exposed with multi-beam tool at 5 keV for implants and mature nodes: experimental and simulated model study [9423-61]</td>
</tr>
</tbody>
</table>

POSTER SESSION: NOVEL LITHOGRAPHY AND APPLICATIONS

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 1U</td>
<td>Electric-field assisted assembly of core-shell nanoparticle arrays for contact hole patterning [9423-67]</td>
</tr>
<tr>
<td>9423 1V</td>
<td>Photo-induced large-scale circular surface-relief diffraction gratings on azo-glass [9423-68]</td>
</tr>
<tr>
<td>9423 1W</td>
<td>Solid immersion optical lithography: tuning the prism/sample interface for improved ultra high-NA, high aspect ratio resist patterns over large exposure fields [9423-69]</td>
</tr>
</tbody>
</table>

POSTER SESSION: DIRECTED SELF-ASSEMBLY

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9423 1X</td>
<td>Computational analysis of hole placement errors for directed self-assembly [9423-71]</td>
</tr>
<tr>
<td>9423 1Y</td>
<td>Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing [9423-72]</td>
</tr>
</tbody>
</table>
Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations [9423-73]

Tilting of lamellar domains on neutral random copolymer brushes [9423-74]

Mapping self-assembled dots and line arrays by image analysis for quantification of defect density and alignment [9423-77]

193i lithography for contact doubling with grapho-epitaxy DSA: a simulation study [9423-79]

Nanomechanical properties of solvent cast PS and PMMA polymer blends and block copolymers [9423-80]

Creation of guiding patterns for directed self-assembly of block copolymers by resistless direct e-beam exposure [9423-81]

Study of DSA interaction range using Gaussian convolution [9423-85]

Barriers to defect melting in chemo-epitaxial directed self-assembly of lamellar-forming diblock copolymer/homopolymer blends [9423-87]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ahmad, Ahmad, 0E
Ahn, Chi Won, 1N
Ammann, A., 22
Andén, Thomas, 0T
Angelov, Tihomir, 0E
Arellano, Noel, 07
Argoud, M., 17
Atanasov, Ivaylo, 0E
Aydogan, Cemal, 0E
Azuma, Tsukasa, 16
Balakrishnan, Srinivasan, 07
Barke, S., 0U
Barnola, S., 17
Bayana, Hareen, 0M
Bayle, Sébastien, 12
Bekaert, Joost, 05, 06, 18, 1F, 2A
Bérard-Bergery, S., 17, 24
Bilenberg, Brian, 0T
Blakie, Richard J., 1W
Blaïsi, B., 0U
Bonnecaze, Roger T., 0W
Borriès, Xavier, 0K, 26
Bos, S., 17
Bouanani, S., 17
Brandt, Pieter, 11, 12, 1C
Brink, Markus, 07, 14
Buccignano, James, 14
Bunday, Benjamin D., 19
Burns, Sean, 03
Butschke, Joerg, 1A
Cai, Sibo, 1E
Cao, Yi, 05, 0M, 0R, 15
Carlili, Michael, 2C
Carpenter, Corinne L., 1Z
Chamiot-Maïtral, G., 17
Chan, Boon Teik, 05, 0M
Chang, Shih-wei, 0N
Chen, Cheng-Hung, 1D
Chen, M. C., 1M
Chen, P. S., 10
Cheng, Joy, 07, 14
Chevalier, X., 17
Chien, Tsung-Chih, 1D
Chikashita, Ito, 0M
Cho, Wooyong, 0S
Choi, Byungil, 1E
Choi, Kang-Hoon, 1B
Chopra, Meghali J., 0W
Colburn, Matthew, 0S, 14
Constancias, Christophe, 1Q
Cooke, M., 0I
Cordini, Marie-Laure, 1Q
Coskun, Tamer H., 1G
Dawes, Simon, 14
Delaney, Kris T., 11, 12, 2C
Dellemann, Gregor, 19
de Pablo, Juan J., 1K
Diemer, Mads, 0T
Doerk, Gregory S., 07
Doise, Jan, 0S
Dessing, Michael, 0T
D’Urzo, Lucia, 0M
Ebertle, Anna Lena, 19
Esashi, M., 13
Essendrop, Sören, 0T
Essomba, Philippe, 1C
Evangelio, Laura, 25, 26
Farrell, Richard, 0S
Fay, Aurélien, 11, 1Q
Felicen, Nelson, 0S
Fenger, Germain, 05, 06, 2A
Fernández-Regueiro, Marta, 26
Fleming, Andrew J., 0F
Fleury, G., 17
Fouquet, A., 17, 24
Franke, Eliot, 0S
Freixedas, Jordi, 26
Fredrickson, Glenn H., 11, 1Z, 2C
Fuchimoto, Daisuke, 05
Garbowsi, Tomasz, 19
Garnæs, Jørgen, 0T
Garnier, Grant, 1K
Gerbolés, M., 0K
Gharbi, A., 17, 24
Ginzburg, Valeri V., 04, 0N
Ginsner, T., 0U
Goodyear, A., 0I
Gronheid, Roel, 05, 0M, 15, 18, 1F, 1K, 2A
Guillem, Michael, 07, 0S, 14
Guo, Xuexue, 1U
Gupta, Rachit, 0S
Gutsch, Manuela, 1B
Hadjiloannou, G., 17
Hagen, C. W., 0I
Hanisch, Norbert, 01
Harsch, Saburo, 0D
Harukawa, Ryota, 0M
Hauser, H., 0U
Hayashi, Naoya, 0D
Hazart, J., 17, 24
He, Yuan, 06
Henderson, Clifford L., 1J, 1L, 1Y
Her, YoungJun, 0R
Hetzer, David, 0S
Hofer, Manuel, 0E
Hohle, Christoph, 1B
Holdsworth, John L., 0F
Holz, Mathias, 0E
Hong, C. S., 1M
Hong, Le, 06
Hsu, Yautzong, 0O
Hur, Su-Mi, 1K
Ibbotson, Dale, 11
Ishchuk, Valentyn, 0E
Ivanov, Tzvetan, 0E
Izumi, Kenichi, 2C
Jacobs, Alan G., 09
Jang, Hyun Ik, 1N
Jeon, Seok Woo, 1N
Johansson, Alicia C., 0T
Joseph, Eric, 14
Jung, Sung Gon, 0S
Kamerbeek, M. J., 0I
Kanai, Hideki, 16
Karageorgos, Ioannis, 05
Kasahara, Yusuke, 16
Kawamonzen, Yoshiaki, 16
Kemen, Thomas, 19
Khunsin, W., 22
Kihara, Naoko, 16
Kim, Bongkeun, 2C
Kim, JiHoon, 0M, 0R, 15
Kim, Woo Choong, 1N
Kitano, T., 1X
Klaus, David, 14
Ko, Akisteru, 0S
Kobayashi, Katsutoshi, 16
Kodera, Katsuyoshi, 16
Koepefni, Corinna, 1A
Kojima, A., 13
Koshida, N., 13
Kristensen, Anders, 0T
Kristiansen, Tommy Tungelund, 0T
Krivoschapkina, Yana, 0E
Kubota, Hitoshi, 16
Kuo, David, 0O
Kurihara, Masaaki, 0D
Laachi, Nabil, 11, 1Z, 2C
Lafferty, Neal, 06
Lai, Kafai, 0S
Lapeyre, C., 17
Lattard, Ludovic, 1C, 1Q
Laytov, Azat, 1G
Lawson, Richard A., 1J, 1L, 1Y
Lee, Kim Y., 00
Lei, Junjiong, 06
Leibold, James, 1V
Lenk, Steve, 0E
Li, Mingqi, 0N
Lie, Fee Li, 0S
Liedel, Clemens, 09
Liu, Burn J., 1D
Lin, Guanyang, 05, 0M, 0R, 15
Lin, Lan, 1U
Lin, Shy-Jay, 10, 1D, 1P
Lipowicz, Hubert-Seweryn, 0E
Lippincott, George, 06
Liu, Chi-Chun (Charlie), 07, 0S
Liu, Jimmy, 11
Llobet, J., 0K
Lorenzonii, Matteo, 25, 26
Lowrey, Sam, 1W
Ludovice, Peter J., 1J, 1L, 1Y
Lugani, Gurpreet S., 04, 0N
Ma, Yuansheng, 06
Madsen, Morten Hannibal, 0T
Mahadevaprapuram, Nikhil, 20
Malloy, Matt, 19
Mortens, Stephan, 1A
Matsuzaki, K., 1X
Mayer, Theresa S., 1U
Mebiene, Armel-Petit, 1C
Mikkelsen, Niels Jørgen, 0T
Milléquant, Matthieu, 12
Millward, Dan B., 04, 0N
Minegishi, Shinya, 16
Minzar, Daniel, 0T
Mitra, Indranil, 20
Miyagi, Ken, 16
Miyaguchi, H., 13
Mohanty, Nihar, 0S
Monget, C., 17
Morris, M. A., 22
Mukhtar, Maseeh, 19
Müller, C., 0U
Muramatsu, M., 1X
Muroyama, M., 13
Nagai, Takaharu, 0D
Nakano, T., 1X
Nakano, T., 1X
Nagatsuka, Venkat, 0M
Nakano, T., 1X
Narai, Kathleen, 0M, 1F, 2A
Nagai, Takaharu, 0D
Nagaswami, Venkat, 0M
Nakano, T., 1X
Naganwali, Venkat, 0M
Nakano, T., 1X
Nealey, Paul F., 0M, 15, 1K
Nicolet, Célia, 17, 25
Nielsen, Theodor, 0T
Niroomand, Ardavan, 04
Nishino, H., 13
Conference Committee

Symposium Chair

Mircea V. Dusa, ASML US, Inc. (United States)

Symposium Co-chair

Bruce W. Smith, Rochester Institute of Technology (United States)

Conference Chair

Douglas J. Resnick, Canon Nanotechnologies, Inc. (United States)

Conference Co-chair

Christopher Bencher, Applied Materials, Inc. (United States)

Conference Program Committee

Frank E. Abboud, Intel Corporation (United States)
Alan D. Brodie, KLA-Tencor Corporation (United States)
Kenneth R. Carter, University of Massachusetts Amherst (United States)
Juan J. de Pablo, The University of Chicago (United States)
Elizabeth A. Dobisz, HGST (United States)
Michael A. Guillorn, IBM Thomas J. Watson Research Center (United States)
Naoya Hayashi, Dai Nippon Printing Company Ltd. (Japan)
Daniel J. C. Herr, The University of North Carolina at Greensboro (United States)
Tatsuhiko Higashiki, Toshiba Corporation (Japan)
James A. Liddle, National Institute of Standards and Technology (United States)
Shy-Jay Lin, Taiwan Semiconductor Manufacturing Company Ltd. (Taiwan)
Hans Loeschner, IMS Nanofabrication AG (Austria)
John G. Maltabes, Hewlett-Packard Laboratories (United States)
Dan B. Millward, Micron Technology, Inc. (United States)
Laurent Pain, CEA-LETI (France)
Ivo W. Rangelow, Technische Universität Ilmenau (Germany)
Benjamin M. Rathsock, Tokyo Electron America, Inc. (United States)
Ricardo Ruiz, HGST (United States)
Frank M. Schellenberg, Consultant (United States)
Helmut Schift, Paul Scherrer Institut (Switzerland)
Ines A. Stolberg, Vistec Electron Beam Lithography Group (Germany)
Kevin T. Turner, University of Pennsylvania (United States)
Marco J. Wieland, MAPPER Lithography (Netherlands)
Wei Wu, The University of Southern California (United States)
Todd R. Younkin, Intel Corporation (United States)

Session Chairs

1 Keynote Session
Douglas J. Resnick, Canon Nanotechnologies, Inc. (United States)
Christopher Bencher, Applied Materials, Inc. (United States)

2 DSA Process and Integration
Joy Y. Cheng, IBM Research - Almaden (United States)
Dan B. Millward, Micron Technology, Inc. (United States)

3 UV-NIL for IC Manufacturing
Naoya Hayashi, Dai Nippon Printing Company Ltd. (Japan)
Tatsuhiko Higashiki, Toshiba Corporation (Japan)

4 Scanning Probe Lithography
Ivo W. Rangelow, Technische Universität Ilmenau (Germany)
Alan D. Brodie, KLA-Tencor Corporation (United States)

5 Novel Lithography and Applications
Wei Wu, The University of Southern California (United States)
Laurent Pain, CEA-LETI (France)

6 Metrology and Inspection for Directed Self-Assembly: Joint Session with Conferences 9423 and 9424
Martha I. Sanchez, IBM Research - Almaden (United States)
Daniel J. C. Herr, The University of North Carolina at Greensboro (United States)

7 DSA Materials and Processes I: Joint Session with Conferences 9425 and 9423
Juan J. de Pablo, The University of Chicago (United States)
Roel Gronheid, IMEC (Belgium)

8 DSA Materials and Processes II: Joint Session with Conferences 9425 and 9423
Todd R. Younkin, Intel Corporation (United States)
Sean D. Burns, IBM Corporation (United States)

9 Nanoimprint Lithography: Non-IC Applications
Helmut Schift, Paul Scherrer Institut (Switzerland)
Kenneth R. Carter, University of Massachusetts Amherst (United States)
10 Multibeam Lithography
Hans Loeschner, IMS Nanofabrication AG (Austria)
Frank E. Abboud, Intel Corporation (United States)

11 DSA Line and via Patterning
Ricardo Ruiz, HGST (United States)
Benjamen M. Rathsack, Tokyo Electron America, Inc. (United States)

12 Electron-Beam Applications
Shy-Jay Lin, Taiwan Semiconductor Manufacturing Company Ltd. (Taiwan)
Ines A. Stolberg, Vistec Electron Beam GmbH (Germany)

13 DSA Design for Manufacturability: Joint Session with Conferences 9423, 9426, and 9427
Michael A. Guillorn, IBM Thomas J. Watson Research Center (United States)
Sachiko Kobayashi, Toshiba Corporation (Japan)
Vivek K. Singh, Intel Corporation (United States)

14 DSA Modeling
Frank M. Schellenberg, Consultant (United States)
Elizabeth A. Dobisz, HGST (United States)
Introduction

The semiconductor industry has relentlessly marched down a path which has enabled device dimensions with half pitches as small as 15nm to be realized. Spacer multiple patterning in particular has been invaluable for the NAND Flash market and, in recent years, has found its way into both DRAM and logic based devices. Spacer patterning has not only introduced additional processing costs, but also enabled scaling greater than the tradition 0.7 factor, with multiple device makers continuing to report lower cost per function.

Several options exist to extend the semiconductor technology roadmap beyond the 14nm node. Both top down and bottom up lithographic technologies are now part of the ITRS roadmap, and among the candidates are maskless lithography, nanoimprint lithography and directed self-assembly (DSA). In addition to enabling cost effective solutions for the logic and memory markets, these lithographic solutions also hold the promise of enabling many other key markets that also require high resolution lithography. Included in this list are patterned media for hard disk drives, high brightness light emitting diodes and several display related applications.

Any lithographic technology needs to address several key requirements beyond just resolution. Critical parameters include layout restrictions, defectivity, overlay, grid correction, throughput and cost. In addition, any consideration for high volume manufacturing must include a supporting infrastructure which allows a seamless integration of the new technology into a production facility. The goal of the Alternative Lithography Conference was to review new lithographic solutions, as well as monitor the progress of technologies that could one day become mainstream. The conference did not limit itself to the options listed in the ITRS roadmap and also considered innovative approaches including: plasmonics, micromirror optical lithography, interferometric lithography, tip-based nanolithography, scanning array lithography, dip pen printing and drop-on-demand inkjet lithography.

This year’s conference consisted of more than 78 invited and contributed presentations on these topics. The conference was held over three and a half days, with fourteen oral sessions, a poster session and a panel discussion.

The Alternative Lithography Conference was highlighted by three Keynote presentations Monday afternoon. Speakers included: Dr. Yan Borodovsky from Intel, Dr. Toshiaki Ikoma from Canon, and Dr. Dan Millward of Micron. Dr. Borodovsky emphasized the need for edge placement on complimentary patterning layers and suggested that work was needed on selective growth mechanisms to meet pattern placement specifications. Dr. Ikoma introduced Canon’s nanoimprint lithography program and discussed both progress in the technology space, as well as introducing new imprint systems to the community. Dr. Millward gave an insightful overview on DSA and discussed both progress
made, technical hurdles and benchmarked performance versus SAQP (spacer quadruple patterning).

DSA still commands the most attention at this conference and speakers from Intel, TEL and elsewhere reported significant improvements on defect density, for both hole and dense line patterns.

Step and repeat nanoimprint lithography was covered by speakers from Toshiba, Canon, Canon Nanotechnologies and Dai Nippon Imprinting. The invited talk from Toshiba reviewed both the progress made, as well as infrastructure areas where help was still required.

Beam lithography talks were highlighted by two presentations: One from IMS Nanofabrication, which reviewed their progress on a multi-beam mask writer; and a second from Sematech and Zeiss, which discussed the progress made on a multibeam inspection tool for both wafers and masks.

A conference of this magnitude cannot be successful without a dedicated program committee, and our thanks go out to all the committee members for their tireless review of abstracts and help with the organization of the individual sessions. Special thanks are also due to Alex Liddle and Martha Sanchez for hosting a panel discussion on the topic: Dimensional Scaling, Design Optimization, and Metrology: What are We Missing?

Next year, Chris Bencher from Applied Materials and Joy Cheng from IBM will chair the conference. We look forward to your continued support through the submission of abstracts and manuscripts, and look forward to seeing everyone next year.

Douglas J. Resnick
Christopher Bencher