19 March 2015 Machine learning and predictive data analytics enabling metrology and process control in IC fabrication
Author Affiliations +
Abstract
Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Narender Rana, Narender Rana, Yunlin Zhang, Yunlin Zhang, Donald Wall, Donald Wall, Bachir Dirahoui, Bachir Dirahoui, Todd C. Bailey, Todd C. Bailey, } "Machine learning and predictive data analytics enabling metrology and process control in IC fabrication", Proc. SPIE 9424, Metrology, Inspection, and Process Control for Microlithography XXIX, 94241I (19 March 2015); doi: 10.1117/12.2087406; https://doi.org/10.1117/12.2087406
PROCEEDINGS
11 PAGES


SHARE
Back to Top