You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 March 2015Algorithm for decomposition of additive strain from dense network of thin film sensors
The authors have developed a capacitive-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. The measurement principle is based on a measurable change in capacitance provoked by strain. In the case of bi-directional in-plane strain, the sensor output contains the additive measurement of both principal strain components. In this paper, we present an algorithm for retrieving the directional strain from measurements. The algorithm leverages the dense network application of the thin film sensor to reconstruct the surface strain map. A bi-directional shape function is assumed, and it is differentiated to obtain expressions for planar strain. A least square estimator (LSE) is used to reconstruct the planar strain map from the sensors measurement’s, after the system’s boundary conditions have been enforced in the model. The coefficients obtained by the LSE can be used to reconstruct the estimated strain map or the deflection shape directly. Results from numerical simulations and experimental investigations show good performance of the algorithm, in particular for monitoring surface strain on cantilever plates.
Hussam Saleem,Austin Downey, andSimon Laflamme
"Algorithm for decomposition of additive strain from dense network of thin film sensors", Proc. SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, 94351N (27 March 2015); https://doi.org/10.1117/12.2084369
The alert did not successfully save. Please try again later.
Hussam Saleem, Austin Downey, Simon Laflamme, "Algorithm for decomposition of additive strain from dense network of thin film sensors," Proc. SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, 94351N (27 March 2015); https://doi.org/10.1117/12.2084369