You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2015Modeling of thermal wave propagation in damaged composites with internal source
SMArt Thermography exploits the electrothermal properties of multifunctional smart structures, which are created by embedding shape memory alloy (SMA) wires in traditional carbon fibre reinforced composite laminates (known as SMArt composites), in order to detect the structural flaws using an embedded source. Such a system enables a built-in, fast, cost-effective and in-depth assessment of the structural damage as it overcomes the limitations of standard thermography techniques. However, a theoretical background of the thermal wave propagation behaviour, especially in the presence of internal structural defects, is needed to better interpret the observations/data acquired during the experiments and to optimise those critical parameters such as the mechanical and thermal properties of the composite laminate, the depth of the SMA wires and the intensity of the excitation energy. This information is essential to enhance the sensitivity of the system, thus to evaluate the integrity of the medium with different types of damage. For this purpose, this paper aims at developing an analytical model for SMArt composites, which is able to predict the temperature contrast on the surface of the laminate in the presence of in-plane internal damage (delamination-like) using pulsed thermography. Such a model, based on the Green’s function formalism for one-dimensional heat equation, takes into account the thermal lateral diffusion around the defect and it can be used to compute the defect depth within the laminate. The results showed good agreement between the analytical model and the measured thermal waves using an infrared (IR) camera. Particularly, the contrast temperature curves were found to change significantly depending on the defect opening.
The alert did not successfully save. Please try again later.
Francesco Ciampa, Stefano L. Angioni, Fulvio Pinto, Gennaro Scarselli, Darrel P. Almond, Michele Meo, "Modeling of thermal wave propagation in damaged composites with internal source," Proc. SPIE 9437, Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure 2015, 943709 (1 April 2015); https://doi.org/10.1117/12.2085488