You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2015Nonlinear acoustics for practical applications
Three different ultrasonic nonlinearity parameter measurement methods are available: the capacitive detection method to measure absolute values of nonlinearity parameters; the laser interferometry detection as a non-contact method; the contact piezoelectric transducer based relative measurement method. Among all these three methods, the contact piezoelectric transducer detection method has been used as the most practical approach due to its operational simplicity for materials damage assessments. One of the main drawbacks of this technique, however, has been the low sensitivity of the receiving transducers, especially for the second harmonic signals, causing a high uncertainty in measurements. In this work, it is demonstrated with a copper [100] single crystal that a couple of high Q-value band-pass filters and a low-noise preamplifier introduced in the system not only improve the measurement accuracy but also make it possible to determine absolute values of nonlinearity parameters without using the complex capacitive detection method.
The alert did not successfully save. Please try again later.
To Kang, Jeong K. Na, Sung-Jin Song, Jin-Ho Park, "Nonlinear acoustics for practical applications," Proc. SPIE 9437, Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure 2015, 94370U (1 April 2015); https://doi.org/10.1117/12.2084101