You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 May 2015Remote vibrometry vehicle classification
In vehicle target classification, contact sensors have frequently been used to collect data to simulate laser vibrometry data. Accelerometer data has been used in numerous literature to test and train classifiers instead of laser vibrometry data [1] [2]. Understanding the key similarities and differences between accelerometer and laser vibrometry data is essential to keep progressing aided vehicle recognition systems. This paper investigates the contrast of accelerometer and laser vibrometer data on classification performance. Research was performed using the end-to-end process previously published by the authors to understand the effects of different types of data on the classification results. The end-to-end process includes preprocessing the data, extracting features from various signal processing literature, using feature selection to determine the most relevant features used in the process, and finally classifying and identifying the vehicles. Three data sets were analyzed, including one collection on military vehicles and two recent collections on civilian vehicles. Experiments demonstrated include: (1) training the classifiers using accelerometer data and testing on laser vibrometer data, (2) combining the data and classifying the vehicle, and (3) different repetitions of these tests with different vehicle states such as idle or revving and varying stationary revolutions per minute (rpm).