You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 May 2015Beyond H.264: implications of next generation video compression on surveillance imagery
Unmanned aerial systems (UAS) equipped with electro-optic (EO) full motion video (FMV) sensors often need to transmit image sequences over a limited communications channel, requiring either intense compression, reduced frame rate, or reduced resolution to reach the receiver. In an attempt to improve rate-distortion performance of common video compression algorithms, such as H.264/AVC, several groups are developing compres- sion methods to improve video quality at low bitrates. Concepts of these next generation methods, including H.265/HEVC, Google’s VP9, and Xiph.org’s Daala are examined in contrast to H.264/AVC, BBC’s Dirac, and Motion-JPEG2000 within the context of aerial surveillance. We present a compression performance analysis of these algorithms according to PSNR.
The alert did not successfully save. Please try again later.
Christopher D. McGuinness, Eric J. Balster, Kevin C. Priddy, "Beyond H.264: implications of next generation video compression on surveillance imagery," Proc. SPIE 9464, Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VI, 94640V (20 May 2015); https://doi.org/10.1117/12.2181939