You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 May 2015Super-resolution imaging in remote sensing
A new effective image super resolution (SR) algorithm which is a hybrid of multiple frame Variational Bayesian (VB) reconstruction and single frame Dictionary Learning (DL) reconstruction method is developed to reconstruct a high resolution (HR) satellite image in this article. Firstly, by employing a variational Bayesian analysis, the unknown high resolution image, the acquisition process, the motion parameters and the unknown model parameters are built together in a single mathematical model with a Bayesian formula, and then the distributions of all unknowns are jointly estimated. Without any parameter adjustment, an HR image is adaptively reconstructed from multiple frame low resolution (LR) images. Secondly, by taking the above HR image as input, a higher resolution image can be rebuilt utilizing the statistical correlation between the HR and LR images which is obtained via the DL method. The VB method effectively uses non-redundant information between LR images to recover HR satellite images. Benefit from the dictionary training of magnanimity image, the DL algorithm is able to provide more high-frequency image details, which means this hybrid of VB and DL method combines the above advantages. The experiments show that this proposed algorithm can effectively increase the image resolution of remote sensing images by 0.5times at least comparing with low resolution image.
The alert did not successfully save. Please try again later.
Qiuhua Luo, Xiaopeng Shao, Ligen Peng, Yi Wang, Lin Wang, "Super-resolution imaging in remote sensing," Proc. SPIE 9501, Satellite Data Compression, Communications, and Processing XI, 950108 (21 May 2015); https://doi.org/10.1117/12.2176172