Translator Disclaimer
5 May 2015 Photoluminescence characterization of ZnO nanowires functionalization
Author Affiliations +
Nanostructured photoluminescent materials are optimal transducers for optical biosensors due to their capacity to convert molecular interactions in light signals without contamination or deterioration of the samples. In recent years, nanostructured biosensors with low cost and readily available properties have been developed for such applications as therapeutics, diagnostic and environmental. Zinc oxide nanowires (ZnO NWs) is material with unique properties and due to these they were widely studied in many fields as electronics, optics, and photonics. ZnO NWs can be either grown independently or deposited on solid support, such as glass, gold substrates and crystalline silicon. Vertical aligned ZnO forest on a substrate shows specific advantages in photonic device fabrication. ZnO NWs are typically synthesized by such techniques classified as vapour phase and solution phase synthesis. In particular, hydrothermal methods have received a lot of attention and have been widely used for synthesis of ZnO NWs. This technique shows more crystalline defects than others due to oxygen vacancies, so as the material shows intense photoluminescence emission under laser irradiation. ZnO NWs surface is highly hydrolysed, so it is covered by OH reactive groups, and standard biomodification chemistry can be used in order to bind bioprobes on the surface. In this work, we present our newest results on synthetic nanostructured materials characterization for optical biosensors applications. In particular, we characterize the ZnO NWs structure grown on crystalline silicon by SEM images and the biomodification by photoluminesce technique, fluorescence microscopy, water contact angle and FT-IR measurements.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jane Politi, Mariano Gioffrè, Ilaria Rea, Luca De Stefano, and Ivo Rendina "Photoluminescence characterization of ZnO nanowires functionalization", Proc. SPIE 9506, Optical Sensors 2015, 95061Z (5 May 2015);

Back to Top