You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 July 2015A compact and lensless digital holographic microscope setup
We design a holographic system which is lensless and compact. There is a beam expander in conventional holographic setup to produce parallel light and then with a beam splitter to separate the light into two parts. One is used to illuminate the objects and the other one as the reference light. In our system, instead of utilizing beam expander to generalize parallel beam, the laser is directly produced by a fiber, which provides a spherical wave with a center in the out port of fiber. For this reason, our system contains less optical components so that the setup would be more compact. The only needed processing is to eliminate the second-order aberration caused by different distance between two path and the off-axis to a small extent. An experiment of aberration compensation by using principle component analysis is given, and the result shows that the system works well.
The alert did not successfully save. Please try again later.
Yan Hu, Chao Zuo, Jiasong Sun, Qian Chen, Yuzhen Zhang, "A compact and lensless digital holographic microscope setup," Proc. SPIE 9524, International Conference on Optical and Photonic Engineering (icOPEN 2015), 952426 (17 July 2015); https://doi.org/10.1117/12.2189634