You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 May 2015A SERS-based microfluidic immunoassay using an in-situ synthesized gold substrate
A sensitive SERS (surface-enhanced Raman scattering)-based immunoassay in microfluidic system has been developed with in-situ synthesis of gold substrate and immune reporter named as 4MBA (4-Mercaptobenzoic acid)-labeled immuno-Ag aggregates. The gold substrate was fabricated simply by introducing the hydrogen tetrachloroaurate (III) trihydrate (HAuCl4) solution to microchannels using a microfluidic pump. It was found that the obtained deposited gold nanoparticles were uniform in size and shape. Then the sandwich immunoassays were performed using the gold substrates based on SERS signals. In the immunoassay, the gold nanoparticles decorated surface was modified with certain antibodies to recognize the specific kind of antigen, which was flowed through the microfluidic channel afterwards. Then 4MBA-labeled immuno-Ag aggregates were employed as the SERS probes to quantitatively detect the antigen. The experimental results showed a good specificity and limit of detection (LOD) about 1 ng/mL.
The alert did not successfully save. Please try again later.
Kequan Fan, Zhuyuan Wang, Lei Wu, Shenfei Zong, Yiping Cui, "A SERS-based microfluidic immunoassay using an in-situ synthesized gold substrate," Proc. SPIE 9543, Third International Symposium on Laser Interaction with Matter, 954319 (4 May 2015); https://doi.org/10.1117/12.2182132