You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 September 2015Challenges of designing a zoom lens for planetarium projection
The optical design of zoom lenses for projection applications is a task which has to take many different aspects into consideration. The optical designer has to achieve a demanding specification with respect to monochromatic and polychromatic aberrations across a significant magnification range. Besides the requirements on image quality there are usually numerous constraints deriving from fixed mechanical interfaces that already have an impact in the very early design stages of the paraxial and monochromatic design. It has been proven essential to also include cost targets in the figure of merit during the design work. This paper will outline a systematic process for projection zoom lenses design. A solid specification of the design task in terms of magnification range, image quality therein, mechanical and cost requirements is necessary as starting point. Paraxial considerations are helpful to gain insight into the design problem and choose the appropriate zoom design type for further design work. Intermediate designs, which are only monochromatically corrected, proofed invaluable while considering mechanical design requirements. As soon the basic design requirements are fulfilled it makes sense to correct chromatic aberrations. Outstanding color correction requires extensive use of expensive glasses for secondary color correction. In order to find an ideal compromise between potential cost of an optical design and image quality achieved therewith, we employ tools to identify cost drivers as well as tools to simulate the perceived imaging performance. Together these tools also enable us to efficiently discuss specifications that drive cost without aiding perceived image quality.
The alert did not successfully save. Please try again later.
D. Doering, T. Milde, M. Hanft, "Challenges of designing a zoom lens for planetarium projection," Proc. SPIE 9580, Zoom Lenses V, 958002 (3 September 2015); https://doi.org/10.1117/12.2188548