You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 August 2015From incoherent to coherent x-rays with ICS sources
We present the design and performance parameters for a compact x-ray light source (CXLS), which is presently under construction, based on inverse Compton scattering (ICS) of a high brightness electron bunch on a picosecond laser pulse. The flux and brilliance of this source are orders of magnitude beyond existing laboratory scale sources. The accelerator operates at a repetition rate of 1 kHz with 100 bunches of 100 pC charge, each separated by 5 ns, in each shot. The entire CXLS is a few meters in length and produces hard x-rays tunable over a wide range of photon energies. The scattering laser is a Yb:YAG solid-state amplifier producing 100 mJ pulses at 1030 nm. The laser pulse is frequency-doubled and coupled into a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5×1011 photons/second in a 5% bandwidth and the brilliance is 2×1012 photons/(secmm2mrad20.1%) with a RMS pulse length of 490 fs. Novel concepts for improving the performance of the CXLS with the generation of relativistic electron beams having current modulation at nanometer scale and below are also discussed. This tunable longitudinal modulation enables the production of coherent hard x-rays with ICS.
The alert did not successfully save. Please try again later.
Emilio A. Nanni, William S. Graves, David E. Moncton, "From incoherent to coherent x-rays with ICS sources," Proc. SPIE 9590, Advances in Laboratory-based X-Ray Sources, Optics, and Applications IV, 959006 (26 August 2015); https://doi.org/10.1117/12.2196891