Translator Disclaimer
4 September 2015 Development of precision Wolter mirrors for future solar x-ray observations
Author Affiliations +
High resolution imagery of the solar X-ray corona provides a crucial key to understand dynamics and heating processes of plasma particles there. However, X-ray imagery of the Sun with sub-arcsecond resolution has yet to be conducted due to severe technical difficulty in fabricating precision Wolter mirrors. For future X-ray observations of the Sun's corona, we are attempting to realize precision Wolter mirrors with sub-arcsecond resolution by adopting advanced surface polish and metrology methods based on nano-technology to sector mirrors which consist of a portion of an entire annulus. Following fabrication of the first engineering mirror and subsequent evaluation on the X-ray focusing performance in 2013, the second engineering mirror was made with improvements in both precision polish and metrology introduced. Measurement of focusing performance on the second mirror at SPring-8 synchrotron facility with 8 keV X-rays has demonstrated that the FWHM size of the PSF core reached down to 0.2" while its HPD (Half Power Diameter) size remained at ~3" due to the presence of small-angle scatter just outside of the core. Also, there was notable difference in the focal length between sagittal and meridional focusing which could have been caused by an error in the sag in the meridional direction of <10 nm in the mirror area. Further improvements to overcome these issues have been planned for the next engineering mirror.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Taro Sakao, Satoshi Matsuyama, Ayumi Kime, Takumi Goto, Akihiko Nishihara, Hiroki Nakamori, Kazuto Yamauchi, Yoshiki Kohmura, Akira Miyake, Hirokazu Hashizume, Tadakazu Maezawa, Yoshinori Suematsu, and Noriyuki Narukage "Development of precision Wolter mirrors for future solar x-ray observations", Proc. SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 96030U (4 September 2015);

Back to Top