You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 September 2015Digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming
Digital holography wave-front sensing in the off-axis image plane recording geometry shows distinct potential for directed-energy and remote-sensing applications. For instance, digital holographic detection provides access to the amplitude and wrapped phase associated with an optical field. From the wrapped phase, one can estimate the atmospheric aberrations present and perform adaptive-optics compensation and high-resolution imaging. This paper develops wave-optics simulations which explore the estimation accuracy of digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming. Specifically, this paper models spherical-wave propagation through varying atmospheric conditions along a horizontal propagation path and formulates the field-estimated Strehl ratio as a function of the image-plane sampling, the coherence diameter, the log-amplitude variance, and the distortion number. Such results will allow one to assess the number of pixels needed in a detector array when using digital holographic detection in the presence of strong atmospheric turbulence and thermal blooming.
The alert did not successfully save. Please try again later.
Mark F. Spencer, Ivan V. Dragulin, Daniel S. Cargill, Michael J. Steinbock, "Digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming," Proc. SPIE 9617, Unconventional Imaging and Wavefront Sensing 2015, 961705 (4 September 2015); https://doi.org/10.1117/12.2189943