You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 July 2015Enhancing the performance of cooperative face detector by NFGS
Computerized human face detection is an important task of deformable pattern recognition in today's world. Especially in cooperative authentication scenarios like ATM fraud detection, attendance recording, video tracking and video surveillance, the accuracy of the face detection engine in terms of accuracy, memory utilization and speed have been active areas of research for the last decade. The Haar based face detection or SIFT and EBGM based face recognition systems are fairly reliable in this regard. But, there the features are extracted in terms of gray textures. When the input is a high resolution online video with a fairly large viewing area, Haar needs to search for face everywhere (say 352×250 pixels) and every time (e.g., 30 FPS capture all the time). In the current paper we have proposed to address both the aforementioned scenarios by a neuro-visually inspired method of figure-ground segregation (NFGS) [5] to result in a two-dimensional binary array from gray face image. The NFGS would identify the reference video frame in a low sampling rate and updates the same with significant change of environment like illumination. The proposed algorithm would trigger the face detector only when appearance of a new entity is encountered into the viewing area. To address the detection accuracy, classical face detector would be enabled only in a narrowed down region of interest (RoI) as fed by the NFGS. The act of updating the RoI would be done in each frame online with respect to the moving entity which in turn would improve both FR (False Rejection) and FA (False Acceptance) of the face detection system.
The alert did not successfully save. Please try again later.
Snehal Yesugade, Palak Dave, Srinkhala Srivastava, Apurba Das, "Enhancing the performance of cooperative face detector by NFGS," Proc. SPIE 9631, Seventh International Conference on Digital Image Processing (ICDIP 2015), 96311F (6 July 2015); https://doi.org/10.1117/12.2195302