You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 July 2015An energy saving mechanism of EPON networks for real time video transmission
Modern access networks are constructed widely by passive optical networks (PONs) to meet the growing bandwidth demand. However, higher bandwidth means more energy consumption. To save energy, a few research works propose the dual-mode energy saving mechanism that allows the ONU to operate between active and sleep modes periodically. However, such dual-mode energy saving design may induce unnecessary power consumption or packet delay increase in the case where only downstream data exist for most of the time. In this paper, we propose a new tri-mode energy saving scheme for Ethernet PON (EPON). The new tri-mode energy saving design, combining the dual-mode saving mechanism with the doze mode, allows the ONU to switch among these three modes alternatively. In the doze mode, the ONU may receive downstream data while keeping its transmitter close. Such scenario is often observed for real time video downstream transmission. Furthermore, the low packet delay of high priority upstream data can be attained through the use of early wake-up mechanism employed in both energy saving modes. The energy saving and system efficiency can thus be achieved jointly while maintaining the differentiated QoS for data with various priorities. Performance results via simulation have demonstrated the effectiveness of such mechanism.
The alert did not successfully save. Please try again later.
Chien-Ping Liu, Ho-Ting Wu, Yun-Ting Chiang, Shieh-Chieh Chien, Kai-Wei Ke, "An energy saving mechanism of EPON networks for real time video transmission," Proc. SPIE 9631, Seventh International Conference on Digital Image Processing (ICDIP 2015), 96311X (6 July 2015); https://doi.org/10.1117/12.2197015