You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 September 2015Drastic sensitivity enhancement of temperature sensing based on modal interference in plastic optical fibers
It has been reported that temperature sensors based on modal interference in perfluorinated graded-index (GI) plastic optical fibers (POFs) show the world’s highest temperature sensitivity of +49.8 nm/°C/m at 1300 nm at room temperature, which is over 1800 times the value in silica multimode fibers (MMFs). In this work, we newly find that the temperature sensitivity (absolute value) is significantly enhanced with increasing temperature toward ~70°C, which is close to the glass-transition temperature of the core polymer. When the core diameter is 62.5 μm, the sensitivity at 72 °C at 1300 nm is +202 nm/°C/m, which is approximately 26 times the value obtained at room temperature and even over 7000 times the highest value previously reported using a silica MMF. As the glass-transition temperature of polymers can be generally set to an arbitrary value, this characteristic could be used to develop POF-based temperature sensors with ultra-high sensitivity not only at ~70°C but at arbitrary temperature in future.
The alert did not successfully save. Please try again later.
G. Numata, N. Hayashi, M. Tabaru, Y. Mizuno, K. Nakamura, "Drastic sensitivity enhancement of temperature sensing based on modal interference in plastic optical fibers," Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, 96341R (28 September 2015); https://doi.org/10.1117/12.2194065