Translator Disclaimer
9 November 2015 Absorber topography dependence of phase edge effects
Author Affiliations +
Abstract
Mask topography contributes to phase at the wafer plane, even for OMOG binary masks currently in use at the 22nm node in deep UV (193nm) lithography. Here, numerical experiments with rigorous FDTD simulation are used to study the impact of mask 3D effects on aerial imaging, by varying the height of the absorber stack and its sidewall angle. Using a thin mask boundary layer model to fit to rigorous simulations it is seen that increasing the absorber thickness, and hence the phase through the middle of a feature (bulk phase) monotonically changes the wafer-plane phase. Absorber height also influences best focus, revealed by an up/down shift in the Bossung plot (linewidth vs. defocus). Bossung plot tilt, however, responsible for process window variability at the wafer, is insensitive to changes in the absorber height (and hence also the bulk phase). It is seen to depend instead on EM edge diffraction from the thick mask edge (edge phase), but stays constant for variations in mask thickness within a 10% range. Both bulk phase and edge phase are also independent of sidewall angle fluctuation, which is seen to linearly affect the CD at the wafer, but does not alter wafer phase or the defocus process window. Notably, as mask topography varies, the effect of edge phase can be replicated by a thin mask model with 8nm wide boundary layers, irrespective of absorber height or sidewall angle. The conclusions are validated with measurements on phase shifting masks having different topographic parameters, confirming the strong dependence of phase variations at the wafer on bulk phase of the mask absorber.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Aamod Shanker, Martin Sczyrba, Brid Connolly, Laura Waller, and Andy Neureuther "Absorber topography dependence of phase edge effects ", Proc. SPIE 9635, Photomask Technology 2015, 96350G (9 November 2015); doi: 10.1117/12.2197861; https://doi.org/10.1117/12.2197861
PROCEEDINGS
10 PAGES


SHARE
Advertisement
Advertisement
Back to Top