You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 October 2015Introducing a rain-adjusted vegetation index (RAVI) for improvement of long-term trend analyses in vegetation dynamics
It seems to be obvious that precipitation has a major impact on greening during the rainy season in semi-arid regions. First results1 imply a strong dependence of NDVI on rainfall. Therefore it will be necessary to consider specific rainfall events besides the known ordinary annual cycle. Based on this fundamental idea, the paper will introduce the development of a rain adjusted vegetation index (RAVI). The index is based on the enhancement of the well-known normalized difference vegetation index (NDVI2) by means of TAMSAT rainfall data and includes a 3-step procedure of determining RAVI. Within the first step both time series were analysed over a period of 29 years to find best cross correlation values between TAMSAT rainfall and NDVI signal itself. The results indicate the strongest correlation for a weighted mean rainfall for a period of three months before the corresponding NDVI value. Based on these results different mathematical models (linear, logarithmic, square root, etc.) are tested to find a functional relation between the NDVI value and the 3-months rainfall period before (0.8). Finally, the resulting NDVI-Rain-Model can be used to determine a spatially individual correction factor to transform every NDVI value into an appropriate rain adjusted vegetation index (RAVI).
The alert did not successfully save. Please try again later.
Christine Wessollek, Pierre Karrasch, Babatunde Osunmadewa, "Introducing a rain-adjusted vegetation index (RAVI) for improvement of long-term trend analyses in vegetation dynamics," Proc. SPIE 9644, Earth Resources and Environmental Remote Sensing/GIS Applications VI, 96440M (20 October 2015); https://doi.org/10.1117/12.2192821