You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 July 2015Pattern inspection of etched multilayer EUV mask
Patterned mask inspection for an etched multilayer (ML) EUV mask was investigated. In order to optimize the mask structure from the standpoint of not only a pattern inspection by using a projection electron microscope (PEM), but also by considering the other fabrication processes using electron beam (EB) techniques such as CD metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients (SEECs) of the candidate materials for conductive layer, we evaluated the image contrast and the influence of charging effect. In the cases of 40-pair-ML, 16 nm sized extrusion and intrusion defects were found to be detectable more than 10 sigma in hp 44 nm, 40 nm, and 32 nm line and space (L/S) patterns. Reducing 40-pair-ML to 20-pair-ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16 nm sized defects remained detectable. A double layer structure with 2.5-nm-thik B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.