
Ref ETOP095

Teaching multilayer optical coatings with coaxial cables

J. Cos1, M.M. Sánchez-López1, J. A. Davis2, D. Miller2, I. Moreno3 and P. Velásquez3

1 Dep. Física y Arquitectura de Computadores, Univ. Miguel Hernández, 03202 Elche, Spain
2 Department of Physics, San Diego State University, San Diego, California 92182-1233
3 Dep. Ciencia y Tecnología de Materiales, Universidad Miguel Hernández, 03202 Elche,
Spain

Abstract
We explore the analogies between a system of coaxial cables with periodicity in the
impedance, and a system of dielectric stacks with periodicity in the index of refraction. The
latter is a photonic crystal with wave propagation control in the optical range, while the
former can be regarded as !" #$%!&'!()" *+%,%-'$" $./0,!(" 1%." .!2'%1.3453-$/" $%-,.%(6"73"
reproduce electrical analogs of widely used thin-film optical devices, such as Bragg
reflectors, Fabry-Perot resonators and harmonic transmission filters. Coaxial crystals
represent an inexpensive way of teaching multilayer optical coatings. We show also that a
simple phasor analysis provides an intuitive technique to describe the transmission
properties of optical multilayers.

Summary
Introduction
Optical multilayers are the base of many optical devices. The simplest one consists in
alternating layers of materials with high and low refractive index. Although optical multilayers
are usually studied in an Optics course in Physics and Engineering degrees [1], it is difficult
to perform experiments on this subject in a student laboratory because of the technological
complexity in the fabrication of thin-film optical coatings. In this work we show how to use
coaxial cables to experiment the physics of wave propagation through optical multilayers. We
build a periodically arrangement of cables of high and low impedance, where the impedance
plays the role of the refractive index. These structures, known as coaxial photonic crystals
[2], reproduce in the radio-frequency range optical multilayer devices such as Bragg
reflectors, Fabry-Perot resonators and harmonic transmission filters [3].

Experimental set !up and results
We have built the electrical analog to the optical multilayer (HL)NH, where H and L are the
high and low refraction index layers, N times repeated [1]. Each unit cell of the coaxial
structure has a 50! cable RG-58/U (low impedance, L) and a 75! cable RG-59/U (high
impedance, H) connected with barrel connectors. The extreme media are the sweep
generator (Wavetek 1062) and the oscilloscope (Tektronix TDS-3054), with 508 ouput and
input impedance respectively. To avoid the impedance mismatch at the connection to the
generator and the oscilloscope, we connect a 50! cable of arbitrary length at both ends.
The transmittance of this coaxial cable structure is obtained theoretically by the transfer
matrix method, which is commonly used when studying optical multilayer structures [4].
Figure 1 shows the theoretical and experimental transmitted voltage of the structure (HL)NH,
for N=3,10 and cable lengths of 3 ft (0.9 m). The theoretical results consider lossless cables.
In order to compare them with the measured rms voltage, we have plotted the square root of
the calculated transmittance. As we increase the number of unit cells the transmission
minimum becomes deeper and wider, eventually yielding a forbidden band in transmission
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that is centered at 55.5 MHz. This behaviour is similar to the results with dielectric stacks
[1,4]. Therefore, the coaxial cable structure (HL)NH is the electrical analog of a dielectric
mirror or Bragg reflector.
Now, we can build the electrical analog of a Fabry-93.%,".30%-!,%.":/"$%--3$,'-;"!"$!:(3"<=>?"
between two coaxial mirrors. The structure is: (HL)NH-=>-(HL)NH [3]. Figure 2 shows the
transmitted voltage of a coaxial Fabry-93.%," @',+" ABC" !-2" =>" $!:(3" (3-;,+" %1" D" 1,6" E+3"
theoretical and experimental data agree in the resonance position.
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FIGURE 1. Transmitted voltage of the coaxial Bragg reflector (HL)NH, with cables L=(508,
3ft), H=(758, 3ft) and N=3, 10. (a) Theoretical results, (b) Experimental data.
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FIGURE 2. Transmitted voltage for a Fabry-Perot (HL)5H-!"-(HL)5H, with cables L=(508, 3ft)
and H=(758, 3ft), and mirror spacing !"=6 ft. (a) Theoretical results, (b) Experimental data.

Multilayer harmonic transmission filters can also be mimic with coaxial cables. These
filters are Bragg reflectors that transmit different sets of harmonic frequencies for different
relative thickness of the H and L layers [4]. Figure 3 shows the calculated and measured
transmittance for the coaxial structure (HL)4, where the H and L cable lengths are DH=3 ft and
DL=9 ft. There is a gap in transmittance for the first, second and third harmonics, with a
fundamental frequency of 27.7 MHz. There is no gap at the fourth harmonic. By changing the
relative cable lengths DH/DL we can change which harmonics are transmitted [5]. We show
that a simple phasor analysis provides an intuitive method for understanding the frequency
harmonic aspects of these structures. This phasor analysis is developed from a Fourier
transform (FT) technique which is usually applied to the design of inhomogeneous optical
coatings [5]. In this FT approach, the transmission properties of non-absorbing multilayer
structures are related to the FT of the logarithmic derivative g(x) of the refractive index
profile. The FT of g(x) is defined as " # " # " #" # " #$ %xgiQQ FTexp~ &'('&' , where )('Q and

)('( are the modulus and the phase of " #'Q
~ , respectively!"#! is the inverse wavelength. The

reflectance is large when Q is large; otherwise the incident beam is transmitted [5].

We apply this FT approach to simple (HL)N coaxial cable filters like those of Fig. 3, where
the refraction index profile n(x) is a rectangular function. The logarithmic derivative g(x) of
this function consists in a summation of two sets of delta functions, and its FT can then be
written as [5],
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where d is the total unit cell double optical thickness and 4~ is a complex phasor given by
" #" #mair 5++&4 2exp1~ , being r=0.5 ln(ZH/ZL) and ZH (ZL) the high (low) cable impedance.

The function " #'Q
~ in Eq. (1) takes maximum values at dm&! . Since cf&6&' 1 ,

transmittance gaps are expected at the frequencies given by fm=mv/(2d), where the wave
velocity in coaxial cables is 32cv & . A multigap transmission spectrum of the (HL)N structure
is expected, where m labels the harmonic frequency. However, some of the transmission
gaps will not appear because of the phasor 4~ . The modulus of 4~ determines the modulus of
the function " #'Q~ , and consequently the depth of the transmission gaps.
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FIGURE 3: Coaxial photonic crystal (HL)4# $%&'# ()*+,-# ." DH=3 ft?F" =B<CG8F DL= 9 ft). (a)
Calculated transmittance using the exact transfer matrix method. (b). Experimental
transmittance.

Considering this theory, we examine the
transmission spectra of Fig. 3. Figure 4 shows the
phasor diagrams for the two terms of 4~ for various
harmonic orders m. For m=1,3 the phasors are in
quadrature, thus the first and third transmission
minima have equal depths. For m=2, the phasors
add exactly in phase and the second transmission
gap is the deepest. For m=4, the two phasors
cancel exactly, consequently there is no
transmission gap for the fourth harmonic. Other
(HL)4 structures with different cable length ratio
have been similarly analyzed [5], probing the
accuracy of this phasor analysis.

Conclusion
In summary, we have considered a system of coaxial cables with periodicity in the
impedance and have built the electrical analogs to multilayer optical devices such as Bragg
reflectors, Fabry-Perot resonators and harmonic transmission filters. These simple
experiments require equipment that is available in most student laboratories and are a very
useful tool to show the physics of multilayer optical coatings. Also, we have shown that a
simple phasor diagram derived from a Fourier transform analysis is extremely successful at
predicting the frequencies and relative depths of the transmission minima of multilayer optical
filters.
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FIGURE 4: Phasor diagrams for the
coaxial cable structure of Fig. 3.
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