You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 October 2015Simulation for metal nanowire nanobolometer at infrared frequencies
Nanowire is a kind of nanostructures and it usually has a high aspect ratio. Bolometer having nanowire as its active element is belonged to nanobolometer, compared to the microbolometer usually having thin film active element with area of several to tens square microns. A nanobolometer is expected to have many advantages, such as: very simple structure, small size, low noise, high specific detectivity and short response time. In this work, the optical and thermal properties of platinum nanowire in far infrared wavelengths are studied by using multiphysical finite element numerical calculation tool. Relationship between geometry size of platinum nanowire and its optical and thermal properties are revealed. Due to antenna-resonance electric-field-enhanced effect and small size effect, one absorption peak can be found in optical absorption curve of nanowire. The position of absorption peak is connected with the length of nanowire and the value of absorption peak is mainly impacted by the width and thickness of nanowire. When the aspect ratio is too high, the position of absorption peak will move although length does not be changed. At last, a nanowire based nanobolometer which has great optical and thermal characteristics in the wavelength ranging from 8 μm to 14 μm is designed and simulated. Comparing to the previous reported device using the same structure, thermal performance parameter increases one order of magnitude.
Hongwei Li,Jianjun Lai,Chao Tu, andYanxiang Yang
"Simulation for metal nanowire nanobolometer at infrared frequencies ", Proc. SPIE 9672, AOPC 2015: Advanced Display Technology; and Micro/Nano Optical Imaging Technologies and Applications, 967213 (15 October 2015); https://doi.org/10.1117/12.2202952