You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 October 2015Comparison between highly doped semiconductor and metal infrared antenna
Optical antenna can strongly enhance the interaction of light with matter by their ability to localize electromagnetic fields on nano-metric scale. This allows for the engineering of absorption capabilities to visible and infrared detectors with very small active areas. In this study, we focused on the study of metal and semiconductor infrared antennas for nano-bolometer application. The infrared antennas are applied for increasing the effective absorbing across section, enhancing the field intensity at the gap of the antennas and improving the absorbance of bolometer materials located at the gap. We perform numerical simulation of the characteristics of infrared antennas and analysis the influence of various parameters of antennas (length, wide, and material types) and optimized these parameters to achieve the maximum field enhancement for an optical antenna. We also highlight the comparisons of field enhancement of infrared antenna materials between metal and highly doped semiconductor and discuss some practical issues related to the application of infrared antenna for infrared detectors.
The alert did not successfully save. Please try again later.
Yanxiang Yang, Jianjun Lai, Hongwei Li, Changhong Chen, "Comparison between highly doped semiconductor and metal infrared antenna," Proc. SPIE 9674, AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology, 96742H (15 October 2015); https://doi.org/10.1117/12.2201120