You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 October 2015A stereo matching handling model in low-texture region
In binocular stereo matching, mistakes are relatively easy to appear in low-texture region due to the weak detail information. In order to eliminate the matching ambiguity as well as guarantee the matching rate, this paper proposes a stereo matching algorithm based on image segmentation. In most low-texture region, traditional cost functions are usually used, and the algorithm can only ameliorated through methods such as reasonable support window, dynamic programming and so on. The results of these algorithms make the whole image smooth, and lose many details. The matching cost function in our algorithm is based on the assumption that pixels are similar in homogeneous area, and reduce the use of multiplication so as to obtain better visual effects and decrease the computational complexity. The first is forming the segmentation maps of stereoscopic images as the guidance. Next comes calculating the aggregation cost in stereo matching in both horizontal and vertical direction successively referring to the segmentation maps. Eventually achieving the final disparity map with optimization algorithm, using WTA(Winner-Takes-All) as principle. The computational complexity of this algorithm is independent of the window size, and suitable for different sizes and shapes. The results of experimental show that this algorithm can get better matching precision about the colorful low-texture stereo image pairs, with few increase in computational complexity. This algorithm, to some extent, can improve the match quality of the regions with repeat texture.
The alert did not successfully save. Please try again later.
Yi Ma, Yi Zhang, Jin Han, Lianfa Bai, "A stereo matching handling model in low-texture region," Proc. SPIE 9674, AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology, 967439 (15 October 2015); https://doi.org/10.1117/12.2205134