AOPC 2015: Image Processing and Analysis

Chunhua Shen
Weiping Yang
Honghai Liu
Editors

5–7 May 2015
Beijing, China

Organized by
Chinese Society for Optical Engineering (China)
Photoelectronic Technology Committee, Chinese Society of Astronautics (China)
Science and Technology on Low-light-level Night Vision Laboratory (China)

Sponsored by
Chinese Society for Optical Engineering (China)

Technical Co-sponsor and Publisher
SPIE

Volume 9675
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Six-digit Article CID Number.

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781628419009

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2015, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/15/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a six-digit CID article numbering system structured as follows:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Author Index</td>
<td></td>
</tr>
<tr>
<td>xiii</td>
<td>Conference Committee</td>
<td></td>
</tr>
<tr>
<td>xv</td>
<td>Introduction</td>
<td></td>
</tr>
</tbody>
</table>

IMAGE PROCESSING AND ANALYSIS

9675 02 Automatic identification of lunar craters based on feature points dynamic supply method [9675-1]

9675 03 Using near infrared light for deep sea mining observation systems [9675-9]

9675 04 A compact planar multi-broad band monopole antenna for mobile devices [9675-14]

9675 05 LED-based digital hologram reconstruction by compressive sensing [9675-16]

9675 06 Noise analysis and signal-to-noise ratio model of gain modulation laser imaging [9675-19]

9675 07 Aircraft target onboard detecting technology via Circular Information Matching method for remote sensing satellite [9675-20]

9675 08 High-accuracy mathematical fitting to calculation the atmospheric transmittance of infrared radiation [9675-21]

9675 09 Research on technology of target real-time detection under sea-sky background [9675-22]

9675 0A The Implementation of non-uniformity correction in multi-TDICCD imaging system [9675-23]

9675 0B Image deconvolution under Poisson noise using SURE-LET approach [9675-25]

9675 0C UPRE-variant: a novel criterion for parametric PSF estimation [9675-26]

9675 0D A novel approach to blind deconvolution based on generalized Akaike’s information criterion [9675-27]

9675 0E Effect of severe image compression on face recognition algorithms [9675-28]

9675 0F Speeding up Boosting decision trees training [9675-29]

9675 0G Separability oriented fusion of LBP and CS-LDP for infrared face recognition [9675-30]

9675 0H Face recognition using multiple maximum scatter difference discrimination dictionary learning [9675-31]

9675 0I A robust multi-frame image blind deconvolution algorithm via total variation [9675-34]
Improved restoration algorithm for weakly blurred and strongly noisy image [9675-40]

Real-time infrared image acquisition and display system based on PCI Express and its interfacial design [9675-41]

A multi-characteristic based algorithm for classifying vegetation in a plateau area: Qinghai Lake watershed, northwestern China [9675-42]

A coarse-to-fine automatic and robust registration method for multi-source remote sensing images based on Harris and phase information [9675-43]

Simulating method study on stray light noise out of sunlight baffle of star tracker [9675-49]

Check and modification of GlobeLand30 with MODIS NDVI [9675-51]

Development and application of the alteration mineral information extraction system based on ASTER data [9675-54]

Research on dimensional measurement method of mechanical parts based on stereo vision [9675-55]

Constant false alarm rate algorithm for the dim-small target detection based on the distribution characteristics of target coordinates [9675-59]

Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering [9675-62]

K-means clustering-spiral searching model to solve the rough or accurate obstacle avoidance [9675-64]

The imaging spectrometer based on dual photoelastic modulator of unequal retardation amplitudes [9675-68]

A design of three-stage addressing sweep frequency signal generator [9675-69]

A design of DDS single-frequency signal generator based on phrase jitter technology to reduce scattering noise [9675-70]

Color image super-resolution reconstruction based on POCS with edge preserving [9675-71]

Real-time blind image deconvolution based on coordinated framework of FPGA and DSP [9675-77]

Automatic tracking algorithm based on Kalman filter and scale and orientation adaptive mean shift for a moving object [9675-81]

A new method of multispectral image processing with camouflage effect detection [9675-82]
Study on key techniques for camera-based hydrological record image digitization [9675-84]

Target detection method based on supervised saliency map and efficient subwindow search [9675-85]

Remote sensing image classification based on block feature point density analysis and multiple-feature fusion [9675-86]

High-orbit satellite reflection surface geometry information estimation using photometric measurement method [9675-87]

Blurred face recognition by fusing blur-invariant texture and structure features [9675-89]

Color image enhancement based on HVS and MSRCR [9675-90]

Optimum threshold selection method of centroid computation for Gaussian spot [9675-91]

Color filter array demosaicing: an adaptive progressive interpolation based on the edge type [9675-92]

Restoration of motion blurred image with Lucy-Richardson algorithm [9675-93]

An efficient background modeling approach based on vehicle detection [9675-96]

Infrared image segmentation using HOG feature and kernel extreme learning machine [9675-98]

Detection of dual-band infrared small target based on joint dynamic sparse representation [9675-99]

A space-based infrared image detection algorithm of background rigid motion [9675-100]

Temporal detection method of infrared multiscale target using recursive sparse recovery [9675-101]

Fast and accurate extraction algorithm for center of cross-line based on two windows scanning [9675-102]

Warship detection in smoke screen interference based on region of interest for CMAC-prediction [9675-103]

The method of infrared image simulation based on the measured image [9675-104]

Method of curved surface abnormal holes vision measurement based on high precision turntable [9675-106]

An improved Gabor enhancement method for low-quality fingerprint images [9675-107]

Research on the optimal selection method of image complexity assessment model index parameter [9675-108]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L</td>
<td>Mean-shift tracking algorithm based on adaptive fusion of multi-feature</td>
<td>[9675-110]</td>
</tr>
<tr>
<td>1M</td>
<td>CW-THz image contrast enhancement using wavelet transform and Retinex</td>
<td>[9675-111]</td>
</tr>
<tr>
<td>1N</td>
<td>The registration of star image in multiple cameras</td>
<td>[9675-112]</td>
</tr>
<tr>
<td>1O</td>
<td>A CMOS high speed imaging system design based on FPGA</td>
<td>[9675-113]</td>
</tr>
<tr>
<td>1P</td>
<td>Misguided resistance using extended Kalman filter for imaging seeker</td>
<td>[9675-114]</td>
</tr>
<tr>
<td>1Q</td>
<td>Survey of evaluation methods in image complexity of target and background</td>
<td>[9675-115]</td>
</tr>
<tr>
<td>1R</td>
<td>A modified star map identification method suitable for astronomical camera</td>
<td>[9675-116]</td>
</tr>
<tr>
<td>1S</td>
<td>Coarse-to-fine wavelet-based airport detection</td>
<td>[9675-117]</td>
</tr>
<tr>
<td>1T</td>
<td>A new method to extract stable feature points based on self-generated simulation images</td>
<td>[9675-118]</td>
</tr>
<tr>
<td>1U</td>
<td>Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders</td>
<td>[9675-119]</td>
</tr>
<tr>
<td>1V</td>
<td>Pixel-level analysis of calibration precision for the space-based infrared camera</td>
<td>[9675-120]</td>
</tr>
<tr>
<td>1W</td>
<td>Elderly fall detection using SIFT hybrid features</td>
<td>[9675-121]</td>
</tr>
<tr>
<td>1X</td>
<td>Comparison of site calibration and cross calibration of Gao Fen (GF)-1 Wide Field of View (WFV)</td>
<td>[9675-123]</td>
</tr>
<tr>
<td>1Y</td>
<td>The approach of optical target recognition via compressive sensing theory</td>
<td>[9675-124]</td>
</tr>
<tr>
<td>1Z</td>
<td>Study on pixel matching method of the multi-angle observation from airborne AMPR measurements</td>
<td>[9675-126]</td>
</tr>
<tr>
<td>20</td>
<td>Parallax handling of image stitching using dominant-plane homography</td>
<td>[9675-129]</td>
</tr>
<tr>
<td>21</td>
<td>Method on camouflaged target recognition using the angle of ellipsometry</td>
<td>[9675-130]</td>
</tr>
<tr>
<td>22</td>
<td>The research on binocular stereo video imaging and display system based on low-light CMOS</td>
<td>[9675-132]</td>
</tr>
<tr>
<td>23</td>
<td>A new method of inshore ship detection in high-resolution optical remote sensing images</td>
<td>[9675-134]</td>
</tr>
<tr>
<td>24</td>
<td>Research on HDR image fusion algorithm based on Laplace pyramid weight transform with extreme low-light CMOS</td>
<td>[9675-137]</td>
</tr>
<tr>
<td>25</td>
<td>3D shape modeling by integration visual and tactile cues</td>
<td>[9675-138]</td>
</tr>
<tr>
<td>26</td>
<td>Infrared small target detection with complex background based on image layer and confidence analysis</td>
<td>[9675-141]</td>
</tr>
<tr>
<td>9675 27</td>
<td>Color contrast enhancement method of infrared polarization fused image [9675-144]</td>
<td></td>
</tr>
<tr>
<td>9675 28</td>
<td>Comparison and evaluation of PnP algorithms of monocular vision [9675-146]</td>
<td></td>
</tr>
<tr>
<td>9675 29</td>
<td>Research on the data processing method for the spatially modulated imaging polarimeter [9675-147]</td>
<td></td>
</tr>
<tr>
<td>9675 2A</td>
<td>A method of image multi-resolution processing based on FPGA + DSP architecture [9675-152]</td>
<td></td>
</tr>
<tr>
<td>9675 2B</td>
<td>Ballistic target tracking algorithm based on improved particle filtering [9675-156]</td>
<td></td>
</tr>
<tr>
<td>9675 2C</td>
<td>Camera calibration method of binocular stereo vision based on OpenCV [9675-158]</td>
<td></td>
</tr>
<tr>
<td>9675 2D</td>
<td>Tone mapping infrared images using conditional filtering-based multi-scale retinex [9675-159]</td>
<td></td>
</tr>
<tr>
<td>9675 2E</td>
<td>Adaptive enhancement of sea surface targets in infrared high dynamic range image [9675-160]</td>
<td></td>
</tr>
<tr>
<td>9675 2F</td>
<td>Automated visual inspection of brake shoe wear [9675-162]</td>
<td></td>
</tr>
<tr>
<td>9675 2G</td>
<td>A real-time visual inspection method of fastening bolts in freight car operation [9675-163]</td>
<td></td>
</tr>
<tr>
<td>9675 2H</td>
<td>Maximum projection and velocity estimation algorithm for small moving target detection in space surveillance [9675-165]</td>
<td></td>
</tr>
<tr>
<td>9675 2I</td>
<td>Track extraction of moving targets in astronomical images based on the algorithm of NCST-PCNN [9675-166]</td>
<td></td>
</tr>
<tr>
<td>9675 2J</td>
<td>Infrared small target’s detection and identification with moving platform based on motion features [9675-167]</td>
<td></td>
</tr>
<tr>
<td>9675 2K</td>
<td>A fast moving object detection method based on 2D laser scanner and infrared camera [9675-172]</td>
<td></td>
</tr>
<tr>
<td>9675 2L</td>
<td>Multi-focus image fusion based on improved spectral graph wavelet transform [9675-177]</td>
<td></td>
</tr>
<tr>
<td>9675 2M</td>
<td>Camera self-calibration method based on two vanishing points [9675-179]</td>
<td></td>
</tr>
<tr>
<td>9675 2N</td>
<td>Adaptive detail enhancement for infrared image based on bilateral filter [9675-181]</td>
<td></td>
</tr>
<tr>
<td>9675 2O</td>
<td>Fresnel domain double-phase encoding encryption of color image via ptychography [9675-182]</td>
<td></td>
</tr>
<tr>
<td>9675 2P</td>
<td>Three-dimensional optical encryption based on ptychography [9675-183]</td>
<td></td>
</tr>
<tr>
<td>9675 2Q</td>
<td>Indirect visual cryptography scheme [9675-184]</td>
<td></td>
</tr>
<tr>
<td>9675 2R</td>
<td>Infrared dim small target detection algorithm based on NSCT and SVD [9675-186]</td>
<td></td>
</tr>
</tbody>
</table>
Temporal high-pass filter nonuniformity correction algorithm based on guided filter for IRFPA [9675-187]

An automatic recognition method of pointer instrument based on improved Hough transform [9675-191]

Automatic restoration of motion blurred image based on frequency and cepstrum domain [9675-192]

Infrared target detection based on surfacelet transform and total variation [9675-194]

A real-time automatic contrast adjustment method for high-bit-depth cameras based on histogram variance analysis [9675-195]

Fast infrared dim and small target tracking [9675-198]

Algorithms research of airborne long linear multi-elements whisk broom remote sensing image geometric correction [9675-199]

Performance evaluation of image enhancement methods for objects detection and recognition [9675-200]

Ship detection for high resolution optical imagery with adaptive target filter [9675-202]

Automating 3D reconstruction using a probabilistic grammar [9675-204]

Parsing optical scanned 3D data by Bayesian inference [9675-205]

Reliable clarity automatic-evaluation method for optical remote sensing images [9675-206]

Study on high resolution and high repeatability target localization algorithm in development of national level standard [9675-207]

An improved image sharpness assessment method based on contrast sensitivity [9675-208]

Analysis on correlation imaging based on fractal interpolation [9675-212]

Neural cell image segmentation method based on support vector machine [9675-213]

A stereo matching handling model in low-texture region [9675-214]

An improved stereo based on effective cost aggregation [9675-215]

A novel method of target recognition based on 3D-color-space locally adaptive regression kernels model [9675-216]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

An, Wei, 1E
An, Yongquan, 02
Bai, Jian, 0J
Bai, Lianfa, 38, 39, 3A
Bi, Chao, 1I
Bo, Ping, 11
Bu, Kuichen, 1P
Cal, Tiefeng, 2Z
Cao, Jianzhong, 1O
Cao, Xiangqi, 04
Cao, Zhiqiu, 1Q
Chang, Zheng, 2D
Chen, Anhong, 1Y
Chen, Dong, 1J
Chen, Lin, 1M
Chen, Qian, 05, 36
Chen, Xingfeng, 1Z
Chen, Yanqin, 1Q
Chen, Zhan-qi, 2B
Chen, Zhimin, 2L
Cheng, Kuanhong, 2S
Cheng, Yun, 0A
Cong, Mingyu, 1V
Cui, Guangzhen, 10
Ding, Meng, 2K
Dong, Jiwen, 0E, 0H
Dong, Shuai, 2E
Dong, Xiaona, 2C
Du, Bin, 09
Du, Lin, 1N, 2I
Du, Yaling, 23
Duan, Jin, 1K, 1Q
Duan, Shaoli, 2M
Fan, Muwen, 0V, 0W
Fan, Xiaopeng, 22
Fan, Xinnan, 0Q
Fang, Jianguo, 1I
Fang, Tian, 2T, 2U
Fei, Xiaoliang, 0R
Feng, Jun, 13
Feng, Junhui, 1L
Fu, Qiaoyan, 1X
Gao, Chao, 1W
Gao, Xiangtai, 11
Gao, Xiaoyu, 2T, 2U
Geng, Hao, 1J
Gong, Cailan, 0L
Gong, Guanyuan, 29
Gong, Lei, 1U
Gong, Qiaoxia, 2M
Gong, Yanjun, 1U
Gu, Guohua, 05, 36
Guan, Haowen, 1V
Guan, Wen, 24
Guo, Hong, 22
Guo, Qinghua, 1A
Guo, Yongcai, 1W
Han, Jiaojiao, 2V
Han, Jing, 38, 39, 3A
Han, Rui, 09
Han, Zhixue, 0A
Hao, Shijing, 1V
Hao, Yingming, 22
Hei, Baoqin, 33
Hong, Jun, 12
Hou, Weizhen, 1Z
Hu, Jianghua, 10
Hu, Jinlong, 11
Hu, Qi-fan, 1M
Hu, Qifeng, 23
Hu, Qingping, 08
Hu, Yong, 0L
Hua, Liang-hong, 08
Huang, Yanhua, 21
Huang, Yao, 34
Huang, Ying-xue, 1M
Hui, Bin, 2D
Jia, Yan, 2J
Jiang, Baotan, 2H
Jiang, Chuan-xian, 0Z
Jiang, Nan, 28
Jiang, Ning, 12
Jiang, Yaping, 13
Jiang, Yueda, 0T
Jiang, Yunqiu, 23
Jin, Weiqi, 22, 24
Ju, Hongbin, 3O
Kong, Jun, 1D
Lai, Rui, 2S, 2V
Leng, Hanbing, 2N
Li, Bailing, 36
Li, Bing, 0K
Li, Cheng, 1S, 20
Li, Fanming, 0K
Li, Fugui, 1P

Proc. of SPIE Vol. 9675 967501-9
Li, Guangming, 1Q
Li, Hai, 05
Li, Hai, 05
Li, Haichao, 0M
Li, Hang, 0Y, 26
Li, Hengjian, 0E, 0H
Li, Jia, 2L, 2N
Li, Jicheng, 1C, 1J
Li, Jing, 19
Li, Jingjin, 0N
Li, Ke-wu, 0U
Li, Li, 07
Li, Li, 22, 24
Li, Long, 0L
Li, Man, 39
Li, Miao, 1E
Li, Ming, 0O
Li, Sheng-hong, 2Y
Li, Shengyang, 33
Li, Shijin, 11, 13
Li, Sining, 06
Li, Tuo, 2O, 2P, 2Q
Li, Xiao, 2R
Li, Xiao-yang, 2B
Li, Xin, 03
Li, Yingchun, 1N
Li, Yu feng, 16
Li, Ying, 03
Li, Xinyang, 17
Li, Xuxu, 17
Li, Yan, 1D
Li, Yingchun, 1N
Li, Yu feng, 16
Li, Yueping, 28
Li, Yueqiang, 09
Li, Yujie, 03
Li, Zhao-zhao, 21
Li, Zheng, 1D
Li, Zhengqiang, 1Z
Li, Zhibing, 0C
Liang, Erjun, 2M
Liang, Hua-Wei, 1M
Liang, Ying, 0X
Liang, Ying, 1B
Liao, Yu, 0X
Liao, Anping, 0Q
Liu, Gang, 2R
Liu, Guodong, 0G
Liu, Hongjun, 0Y
Liu, Jiaqi, 0B, 0C
Liu, Jiaqi, 3A
Liu, Jie, 1R
Liu, Li, 1X
Liu, Liang, 1H
Liu, Melying, 1R
Liu, Qianshun, 0L, 0J
Liu, Songtao, 12
Liu, Xiaomin, 2M
Liu, Yang, 1R
Liu, Zhao Hui, 18, 19
Liu, Zhen, 29
Liu, Zhen, 2F
Liu, Zhenxing, 12
Liu, Zhihui, 0V, 0W
Liu, Zhiwen, 33
Long, Fei, 1T
Long, Yunli, 1E
Lou, Shuli, 1H
Lu, Hongqiang, 2A, 2J
Lu, Huimin, 03
Lu, Jun, 2W
Lu, Shengfang, 2F
Lu, Shuning, 1X
Lu, Wei, 06
Lu, Xiaowei, 1C
Luo, Haibo, 2D
Lyu, Laipeng, 1I
Ma, Junyong, 2H
Ma, Weilie, 0L
Ma, Yi, 3B
Man, Yiyun, 0M
Meng, Gang, 0B, 0C
Meng, Peng, 0L
Miao, Yue, 0T
Ming, Delie, 1T, 23
Mu, Yuqiang, 1Y
Nan, Guo, 2F, 2G
Ni, Man, 2R
Ning, Xiao-lei, 2B
Niu, Shiwei, 37
Pan, Ming, 2S, 31, 32
Pan, Zhiqiang, 1X
Pang, Zhao, 15, 20
Peng, Shu, 0O
Peng, Xiaohan, 2A
Qi, Lin, 2E
Qian, Kun, 2X
Qian, Wei-xian, 0R, 0S
Qian, Xiaofei, 1K
Qiao, Liang, 2O, 2P
Qiao, Mingru, 1O
Qie, Lili, 1Z
Qin, Bangyong, 33
Qin, Hanlin, 2L, 2N, 2R, 2S, 2V
Qin, Lei, 10
Qin, Mengze, 1F
Qin, Tianmu, 0N
Qin, Yi, 05
Qiu, Su, 24
Ren, Dongwei, 1C
Ren, Jianjun, 1H
Ren, Kan, 0R, 37
Rong, Shenghui, 2S, 2V, 2X
Serikawa, Seiichi, 03
Shang, Ren, 33
Shen, Haodong, 0Q
Shi, Caicheng, 1G
Shi, Tingling, 1X
Shi, Yishi, 2O, 2P, 2Q
Shi, Zhiguo, 1C
Song, Li-mei, 1A
Song, Yan, 1F

Proc. of SPIE Vol. 9675 967501-10
Conference Committee

Conference Chairs

Guangjun Zhang, Beihang University (China)
Byoungho Lee, Seoul National University (Korea, Republic of)

Conference Co-Chairs

Desheng Jiang, Wuhan University of Technology (China)
Hequan Wu, Chinese Academy of Engineering (China)
Huitao Fan, Aviation Key Laboratory of Science and Technology on Infrared Detector (China)
Junhao Chu, Shanghai Institute of Technical Physics, CAS (China)
Jannick Rolland, University of Rochester (United States)
Lin Li, The University of Manchester (United Kingdom)
Lijun Wang, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Min Gu, Swinburne University of Technology (Australia)
Qiming Wang, Institute of Semiconductors, CAS (China)
Wei Wang, Beijing Institute of Aerospace Control Devices of CASC (China)
Yue Hao, Xidian University (China)
Zheng You, Tsinghua University (China)

Program Committee

Andreas Tünnermann, Friedrich-Schiller-Universität Jena (Germany)
Baiou Guan, Jinan University (China)
Bin Xiangli, Shanghai Engineering Center for Microsatellites (China)
Byoungho Lee, Seoul National University (Korea, Republic of)
Buwen Cheng, Institute of Semiconductors, CAS (China)
Chun Tang, Institute of Applied Electronics, CAEP (China)
Chunhua Shen, The University of Adelaide (Australia)
Chueh Ting, Tianjin Jinhang Institute of Technical Physics (China)
Daniel Jaque, Universidad Autónoma de Madrid (Spain)
Dae Wook Kim, The University of Arizona (United States)
Dawei Zhang, University of Shanghai for Science and Technology (China)
Honghai Liu, University of Portsmouth (United Kingdom)
Haimei Gong, Shanghai Institute of Technical Physics, CAS (China)
Jannick Rolland, University of Rochester (United States)
Jinxue Wang, SPIE
Jin Lu, Tianjin Jinhang Institute of Technical Physics (China)
Jianping Chen, Shanghai Jiaotong University (China)
Junpeng Guo, The University of Alabama in Huntsville (United States)
Kevin P. Thompson, Synopsys, Inc. (United States)
Lan Jiang, Beijing Institute of Technology (China)
Lin Li, Beijing Institute of Technology (China)
Ligong Zheng, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Lijun Wang, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Lin Li, The University of Manchester (United Kingdom)
Min Gu, Swinburne University of Technology (Australia)
Minghui Hong, National University of Singapore (Singapore)
Minlin Zhong, Tsinghua University (China)
Nanjian Wu, Institute of Semiconductors, CAS (China)
Satoshi Kawata, Osaka University (Japan)
Shibin Jiang, AdValue Photonics, Inc. (United States)
Sen Han, University of Shanghai for Science and Technology (China)
Suijian Xue, National Astronomical Observatories, CAS (China)
Tsutomu Shimura, The University of Tokyo (Japan)
Weibiao Chen, Shanghai Institute of Optics and Fine Mechanics, CAS (China)
Wei Wang, Beijing Institute of Aerospace Control Devices of CASC (China)
Weiping Yang, National University of Defense Technology (China)
Xiaocong Yuan, Shenzhen University (China)
Yang Ni, New Imaging Technologies (France)
Yanbiao Liao, Tsinghua University (China)
Yongcai Guo, Chongqing University, Ministry of Education (China)
Yongchun Xie, China Academy of Space Technology (China)
Yong Bi, Academy of Opto-electronics, CAS (China)
Yong Cheng, Wuhan Ordnance Non-Commissioned Officers Academy (China)
Zhiping Zhou, Peking University (China)

Session Chairs

1 Weiping Yang, National University of Defense Technology (China)
2 Bill Moran, The University of Melbourne (Australia)
3 Chunhua Shen, The University of Adelaide (Australia)
4 Honghai Liu, University of Portsmouth (United Kingdom)
Introduction

Applied Optics and Photonics, China (AOPC2015) is the annual conference of the Chinese Society for Optical Engineering, and it is also the largest academic and industrial event in the field of optical and optoelectronic technology in China. The AOPC2015 organization committee intended to build a cohesive platform for academic exchanges, industry exhibitions, and corporate negotiations. The conference had 7 themes, which included 22 technical conferences and 600 technical presentations. We sincerely hope that the research and development of optoelectronic technology was promoted, and that the international cooperation of the optical and optoelectronic industry was enhanced.

AOPC2015 was sponsored by the Chinese Society for Optical Engineering; SPIE, the Optical Society, the European Optical Society, and the Optical Society of Korea were technical co-sponsors. There were also 28 cooperating organizations that supported the conference. We received a total of 1,219 contributions from more than 15 countries, including: the United States, the United Kingdom, Germany, France, Spain, Australia, Canada, Mexico, Brazil, Japan, Republic of Korea, Thailand, Singapore, Russian Federation, and China. Nearly 700 submissions were accepted for the Proceedings of SPIE, and over 150 invited talks and papers were suggested to be published in Journals indexed by SCI and Ei. After careful discussion, we selected five plenary speeches, which were presented by famous scientists from the United States, the United Kingdom, Republic of Korea, Japan, and China. There were 205 invited talks in 12 of the technical conferences. On behalf of the organization committee of AOPC, I express thanks to all of the invited speakers and authors for their contributions to and support of the conference.

To celebrate the International Year of Light 2015, we set up 12 display boards highlighting IYL in the exhibition area on the first level. These display boards were to educate the public about light and the applications of light in society.

Finally, on behalf of Prof. Songlin Zhuang, the other co-chairs, and the organization committee of AOPC, I would like to heartily thank our sponsors and cooperating organizations for all they have done for the conference. I thank all of the participants and friends for their interest and efforts in helping us make the conference a success. I also thank the program committee for their effective work and valuable advice—especially the AOPC2015 secretariat and the SPIE staff for their tireless effort and outstanding services in preparing the conference and publishing the proceedings.
Again, we extend our warmest greetings to you and hope you had a pleasant and exciting stay in Beijing!

Guofan Jin