You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 October 2015An improved image sharpness assessment method based on contrast sensitivity
An image sharpness assessment method based on the property of Contrast Sensitivity Function (CSF) was proposed to realize the sharpness assessment of unfocused image. Firstly, image was performed the two-dimensional Discrete Fourier Transform (DFT), and intermediate frequency coefficients and high frequency coefficients are divided into two parts respectively. Secondly the four parts were performed the inverse Discrete Fourier Transform (IDFT) to obtain subimages. Thirdly, using Range Function evaluates the four sub-image sharpness value. Finally, the image sharpness is obtained through the weighted sum of the sub-image sharpness value. In order to comply with the CSF characteristics, weighting factor is setting based on the Contrast Sensitivity Function. The new algorithm and four typical evaluation algorithm: Fourier, Range , Variance and Wavelet are evaluated based on the six quantitative evaluation index, which include the width of steep part of focusing curve, the ration of sharpness, the steepness, the variance of float part of focusing curve, the factor of local extreme and the sensitivity. On the other hand, the effect of noise, and image content on algorithm is analyzed in this paper. The experiment results show that the new algorithm has better performance of sensitivity, anti-nose than the four typical evaluation algorithms. The evaluation results are consistent with human visual characteristics.
The alert did not successfully save. Please try again later.
Li Zhang, Yan Tian, Yili Yin, "An improved image sharpness assessment method based on contrast sensitivity," Proc. SPIE 9675, AOPC 2015: Image Processing and Analysis, 967535 (8 October 2015); https://doi.org/10.1117/12.2203096