AOPC 2015: Optical Fiber Sensors and Applications

Yanbiao Liao
Weixu Zhang
Desheng Jiang
Wei Wang
Gilberto Brambilla

Editors

5–7 May 2015
Beijing, China

Organized by
Chinese Society for Optical Engineering (China)
Photoelectronic Technology Committee, Chinese Society of Astronautics (China)
Science and Technology on Low-light-level Night Vision Laboratory (China)

Sponsored by
Chinese Society for Optical Engineering (China)

Technical Co-sponsor and Publisher
SPIE

Volume 9679

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
Contents

- vii Author Index
- ix Conference Committee
- xi Introduction

OPTICAL FIBER SENSORS AND APPLICATIONS

9679 02	Analysis and optimization of all-fiber polarization transformers [9679-3]
9679 03	A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors [9679-4]
9679 04	Study on spatial resolution improvement of distributed temperature sensor system by linear fitting algorithm [9679-5]
9679 05	Phase noise measurement of phase modulation microwave photonic links [9679-9]
9679 06	Research progress of the resonant fiber optic gyroscope technology [9679-10]
9679 07	Study on the characteristics of different infrared transmission in atmospheric turbulence [9679-13]
9679 08	Demonstration of 20Gb/s polarization-insensitive wavelength switching system for high-speed free-space optical network [9679-15]
9679 09	Selected cladding mode recoupling based on cascaded LPG and TFBG for satellites vibration environment monitoring [9679-16]
9679 0A	Design and optimization of power current transformer based on FBG sensing [9679-19]
9679 0B	Stabilization technique of optic fiber delay lines for photonic sensing [9679-21]
9679 0C	A new method for testing the scale-factor performance of fiber optical gyroscope [9679-22]
9679 0D	The temperature and tension characteristics of the FBGs embedded in the polythene sheath of an optical cable [9679-23]
9679 0E	A high-speed transceiver with optical SerDes [9679-24]
9679 0F	Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication [9679-25]
Design and realization of a test system for 50Gbit/s optical transmission [9679-26]
Improved artificial bee colony algorithm for wavefront sensor-less system in free space optical communication [9679-27]
Optimization of receiving power distribution using genetic algorithm for visible light communication [9679-28]
Filtering and analysis on the random drift of FOG [9679-29]
Reducing PAPR of optical OFDM system based on PTS and companding joint algorithm [9679-31]
Hydrogen loading to the optic fibers for fiber grating sensors [9679-33]
The effects and inhibition of frequency offset on differential phase-shift keying detection [9679-34]
Research of single-polarization hollow-core photonic crystal fiber active resonator [9679-35]
A novel dispersion flattened and single-mode terahertz photonic crystal fiber with material-filled structure [9679-37]
All-optical signal processing technique for secure optical communication [9679-39]
Low-flattened dispersion photonic crystal fiber with high birefringence and low effective mode area [9679-40]
The research and analysis of the uniformity of the magnetic field of the square Helmholtz coil [9679-42]
Phase-sensitive optical time domain reflectometer for distributed fence-perimeter intrusion detection [9679-43]
A source number estimation method for single optical fiber sensor [9679-44]
Refractive index insensitive curvature sensor based on cladding-mode resonance of specialty triple-clad fiber [9679-45]
Optical inclinometer based on a single long-period fiber grating combined with a large lateral offset [9679-47]
High temperature sensitivity fiber sensor based on M-Z interferometer fabricated by suspended dual-core hollow fiber [9679-49]
Improved optical pulse heterodyne demodulation scheme for fiber-optic interferometric sensors [9679-50]
Study on pattern recognition method based on fiber optic perimeter system [9679-51]
Field trail of fiber optic ocean bottom cable [9679-55]
A direction detective asymmetrical twin-core fiber curving sensor [9679-56]

Impact of dither-based Electro-Optic Modulator bias control on distributed Brillouin sensing system [9679-57]

Theoretical investigations of terahertz polarimetric devices [9679-60]

Analysis of the polarization characteristic of a satellite-to-ground laser communication optical system [9679-63]

Effect of the glass transition of coating adhesive on temperature performance of fiber optic gyroscope and its optimization [9679-66]

Investigation of the MQAM modulation schemes in downlink of space optical communication system [9679-68]

Channel estimation for OFDM system in atmospheric optical communication based on compressive sensing [9679-69]

Design and achievement of an efficient low-order pointer multiplexing and mapping scheme [9679-70]

The theory research of multi-user quantum access network with measurement device independent quantum key distribution [9679-71]

Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope [9679-72]

An optical fiber point liquid level sensor [9679-73]

Analyze and experiment on AC magnetic field’s effect to fiber optic gyroscopes in compact stabilization control systems [9679-75]

Tunable and integrated RF photonic phase shifter based on phase modulation and FBG filtering [9679-76]

Simultaneous measurement of temperature and strain by using a wide-band fiber Bragg grating [9679-79]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

An, Maowei, 0W, 10
An, Yan, 13
Bi, Weihong, 0U
Chang, Shuai, 07
Chen, Alin, 0K
Chen, Guanghui, 0D
Chen, Yangyi, 17
Chen, Yi-wang, 07
Chen, Yongli, 12
Chen, Zhengyu, 05
Cui, Shu-Min, 18
Deng, Ming, 0V
Dong, Fengzhong, 04
Doug, Ke-yan, 13
Duan, Jie, 0P
Duan, Tao, 08, 0P
Feng, Huan, 08
Feng, Lishuang, 0N, 12, 19
Fu, Guangwei, 0U
Fu, Xinghu, 0U
Gao, Kan, 0D
Gao, Xilu, 1C
Gao, Yingjie, 05
Gao, Yi-wei, 02
Ge, Junfeng, 1A
Geng, Hongjian, 16
Geng, Tao, 0W, 10
Gong, Ying, 1A
Gu, Wanyi, 1C
Guo, Hao, 0M
Guo, Tuan, 09
Guo, Yun-Zeng, 0J
Han, Xiang’e, 0H
Hao, Shiqi, 16
Hou, Shiyue, 1C
Hu, Junpeng, 0T
Hu, Xiaoyang, 11
Hua, Bin, 1A
Huang, Jian-ping, 0B
Huang, Shangguo, 1C
Huang, Wenzhu, 0Z
Huang, Zhiping, 0T, 17
Ji, Yi-Ming, 18
Jia, Yangjing, 0K
Jiang, Lun, 13
Jiao, Hongchen, 0N, 19
Jin, Zhonghe, 06
Lai, Haiquang, 0X
Lei, Dongming, 0K
Li, Bowen, 15
Li, Chao, 0C
Li, Fang, 0Z
Li, Hongpu, 1D
Li, Jian, 10
Li, Jianhua, 0O
Li, Jing, 0C
Li, Jinwen, 0E
Li, Jun, 04
Li, Mi, 15
Li, Min, 0Y
Li, Ping, 0K
Li, Ruiya, 03
Li, Yun-Xia, 18
Li, Zhijun, 1B
Liang, H., 0A
Lin, Chen, 0D
Lin, Shao-feng, 0P
Liu, Bohan, 14
Liu, Chao, 09
Liu, Chunwu, 0T
Liu, Feng, 0J
Liu, Jun, 0R
Liu, Mingyao, 03
Liu, Qiang, 0U
Liu, Shu, 0G
Liu, Sufang, 0S
Liu, Weisheng, 09
Liu, Yi, 03
Liu, Yuhao, 0I
Liu, Yumin, 0I
Long, Keping, 0I
Lu, Bin, 0S
Lu, Chun, 0R
Luo, Yingbo, 0Z
Luo, Zhang, 0E
Ma, Huiyan, 06
Ma, Lin, 14
Mao, Yao, 1B
Meng, S., 0A
Meng, Wen, 1B
Meng, Zhou, 0X, 11
Miao, Chaojun, 0H
Pan, Ming, 0S
Pan, Xin, 0R
Pan, Zhi-yong, 0L
Pan, Zhongming, 0M
Pang, Zhengbin, 0E
Peng, Yunfeng, 0I
Conference Committee

Conference Chairs
Guangjun Zhang, Beihang University (China)
Byoungho Lee, Seoul National University (Korea, Republic of)

Conference Co-Chairs
Desheng Jiang, Wuhan University of Technology (China)
Hequan Wu, Chinese Academy of Engineering (China)
Huitao Fan, Aviation Key Laboratory of Science and Technology on Infrared Detector (China)
Junhao Chu, Shanghai Institute of Technical Physics, CAS (China)
Jannick Rolland, University of Rochester (United States)
Lin Li, The University of Manchester (United Kingdom)
Lijun Wang, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Min Gu, Swinburne University of Technology (Australia)
Qiming Wang, Institute of Semiconductors, CAS (China)
Wei Wang, Beijing Institute of Aerospace Control Devices of CASC (China)
Yue Hao, Xidian University (China)
Zheng You, Tsinghua University (China)

Program Committee
Andreas Tünnermann, Friedrich-Schiller-Universität Jena (Germany)
Baiou Guan, Jinan University (China)
Bin Xiangli, Shanghai Engineering Center for Microsatellites (China)
Byoungho Lee, Seoul National University (Korea, Republic of)
Buwen Cheng, Institute of Semiconductors, CAS (China)
Chun Tang, Institute of Applied Electronics, CAEP (China)
Chunhua Shen, The University of Adelaide (Australia)
Chueh Ting, Tianjin Jinhang Institute of Technical Physics (China)
Daniel Jaque, Universidad Autónoma de Madrid (Spain)
Dae Wook Kim, The University of Arizona (United States)
Dawei Zhang, University of Shanghai for Science and Technology (China)
Honghai Liu, University of Portsmouth (United Kingdom)
Haimei Gong, Shanghai Institute of Technical Physics, CAS (China)
Jannick Rolland, University of Rochester (United States)
Jinxue Wang, SPIE
Jin Lu, Tianjin Jinhang Institute of Technical Physics (China)
Jianping Chen, Shanghai Jiaotong University (China)
Junpeng Guo, The University of Alabama in Huntsville (United States)
Kevin P. Thompson, Synopsys, Inc. (United States)
Lan Jiang, Beijing Institute of Technology (China)
Lin Li, Beijing Institute of Technology (China)
Ligong Zheng, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Lijun Wang, Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China)
Lin Li, The University of Manchester (United Kingdom)
Min Gu, Swinburne University of Technology (Australia)
Minghui Hong, National University of Singapore (Singapore)
Minlin Zhong, Tsinghua University (China)
Nanjian Wu, Institute of Semiconductors, CAS (China)
Satoshi Kawata, Osaka University (Japan)
Shibin Jiang, AdValue Photonics, Inc. (United States)
Sen Han, University of Shanghai for Science and Technology (China)
Suijian Xue, National Astronomical Observatories, CAS (China)
Tsutomu Shimura, The University of Tokyo (Japan)
Weibiao Chen, Shanghai Institute of Optics and Fine Mechanics, CAS (China)
Wei Wang, Beijing Institute of Aerospace Control Devices of CASC (China)
Weiping Yang, National University of Defense Technology (China)
Xiaocong Yuan, Shenzhen University (China)
Yang Ni, New Imaging Technologies (France)
Yanbiao Liao, Tsinghua University (China)
Yongcai Guo, Chongqing University, Ministry of Education (China)
Yongchun Xie, China Academy of Space Technology (China)
Yong Bi, Academy of Opto-electronics, CAS (China)
Yong Cheng, Wuhan Ordnance Non-Commissioned Officers Academy (China)
Zhiping Zhou, Peking University (China)

Session Chairs

1 Xuefeng Wang, Beijing Institute of Aerospace Control Devices of CASC (China)

2 Ciming Zhou, Wuhan University of Technology (China)

3 Yi Jiang, Beijing Institute of Technology (China)

4 Yuanhong Yang, Beihang University (China)

5 Hongdu Liu, Hua Tuo Technology (Beijing) Company, Ltd. (China)
Introduction

Applied Optics and Photonics, China (AOPC2015) is the annual conference of the Chinese Society for Optical Engineering, and it is also the largest academic and industrial event in the field of optical and optoelectronic technology in China. The AOPC2015 organization committee intended to build a cohesive platform for academic exchanges, industry exhibitions, and corporate negotiations. The conference had 7 themes, which included 22 technical conferences and 600 technical presentations. We sincerely hope that the research and development of optoelectronic technology was promoted, and that the international cooperation of the optical and optoelectronic industry was enhanced.

AOPC2015 was sponsored by the Chinese Society for Optical Engineering; SPIE, the Optical Society, the European Optical Society, and the Optical Society of Korea were technical co-sponsors. There were also 28 cooperating organizations that supported the conference. We received a total of 1,219 contributions from more than 15 countries, including: the United States, the United Kingdom, Germany, France, Spain, Australia, Canada, Mexico, Brazil, Japan, Republic of Korea, Thailand, Singapore, Russian Federation, and China. Nearly 700 submissions were accepted for the *Proceedings of SPIE*, and over 150 invited talks and papers were suggested to be published in Journals indexed by SCI and Ei. After careful discussion, we selected five plenary speeches, which were presented by famous scientists from the United States, the United Kingdom, Republic of Korea, Japan, and China. There were 205 invited talks in 12 of the technical conferences. On behalf of the organization committee of AOPC, I express thanks to all of the invited speakers and authors for their contributions to and support of the conference.

To celebrate the International Year of Light 2015, we set up 12 display boards highlighting IYL in the exhibition area on the first level. These display boards were to educate the public about light and the applications of light in society.

Finally, on behalf of Prof. Songlin Zhuang, the other co-chairs, and the organization committee of AOPC, I would like to heartily thank our sponsors and cooperating organizations for all they have done for the conference. I thank all of the participants and friends for their interest and efforts in helping us make the conference a success. I also thank the program committee for their effective work and valuable advice—especially the AOPC2015 secretariat and the SPIE staff for their tireless effort and outstanding services in preparing the conference and publishing the proceedings.
Again, we extend our warmest greetings to you and hope you had a pleasant and exciting stay in Beijing!

Guofan Jin